Non-degeneracy and existence of new solutions for the Schrodinger equations

被引:10
作者
Guo, Yuxia [1 ]
Musso, Monica [2 ]
Peng, Shuangjie [3 ]
Yan, Shusen [3 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Somerset, England
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
PERTURBED ELLIPTIC-EQUATIONS; SEMICLASSICAL STATES; MULTIPEAK SOLUTIONS; POSITIVE SOLUTIONS; BOUND-STATES; SYMMETRY; UNIQUENESS; SPHERES;
D O I
10.1016/j.jde.2022.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following nonlinear problem -Delta u + V (|y|)u = u(p), u > 0 in R-N, u is an element of H-1(R-N), (0.1) where V (r) is a positive function, 1 < p < N+2/N-2. We show that the multi-bump solutions constructed in [27] are non-degenerate in a suitable symmetric space. We also use this non-degenerate result to construct new solutions for (0.1). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:254 / 279
页数:26
相关论文
共 27 条
[1]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part II [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :297-329
[2]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[3]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[4]   Solutions without any symmetry for semilinear elliptic problems [J].
Ao, Weiwei ;
Musso, Monica ;
Pacard, Frank ;
Wei, Juncheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (03) :884-956
[5]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[6]  
Bahri A., 1990, Rev. Mat. Iberoam, V6, P1, DOI DOI 10.4171/RMI/92
[7]   POSITIVE SOLUTION AND BIFURCATION FROM THE ESSENTIAL SPECTRUM OF A SEMILINEAR ELLIPTIC EQUATION ON RN [J].
CAO, DM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (11) :1045-1052
[8]   Solutions with multiple peaks for nonlinear elliptic equations [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :235-264
[9]   Existence and uniqueness results on Single-Peaked solutions of a semilinear problem [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01) :73-111
[10]   Infinitely many bound states for some nonlinear scalar field equations [J].
Cerami, G ;
Devillanova, G ;
Solimini, S .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (02) :139-168