Option pricing beyond Black-Scholes based on double-fractional diffusion

被引:40
作者
Kleinert, H. [1 ,2 ]
Korbel, J. [3 ,4 ]
机构
[1] Free Univ Berlin, Inst Theoret Phys, Arnimallee 14, D-14195 Berlin, Germany
[2] ICRANeT Piazzale Repubbl, I-1065122 Pescara, Italy
[3] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague, Czech Republic
[4] Max Planck Inst Hist Sci, Boltzmannstr 22, D-14195 Berlin, Germany
关键词
Double-fractional diffusion; Levy option pricing; Risk redistribution;
D O I
10.1016/j.physa.2015.12.125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how the prices of options can be determined with the help of double-fractional differential equation in such a way that their inclusion in a portfolio of stocks provides a more reliable hedge against dramatic price drops than the use of options whose prices were fixed by the Black-Scholes formula. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:200 / 214
页数:15
相关论文
共 42 条
[1]   On Riemann and Caputo fractional differences [J].
Abdeljawad, Thabet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1602-1611
[2]   CAUSES OF THE FINANCIAL CRISIS [J].
Acharya, Viral V. ;
Richardson, Matthew .
CRITICAL REVIEW, 2009, 21 (2-3) :195-210
[3]  
[Anonymous], MATH SCI ENG
[4]  
[Anonymous], 1961, SELECT TRANSL MATH S
[5]  
[Anonymous], C NATL ACAD SCI
[6]  
[Anonymous], CAHIER I SCI ACTUARI
[7]  
[Anonymous], 2008, ADV EC FINANCIAL RES
[8]  
[Anonymous], 2007, Numer. Math. J. Chinese Univ. (English Ser.)
[9]  
[Anonymous], 2000, INTRO ECONOPHYSICS C
[10]  
[Anonymous], CHAPMAL HALL CRC FIN