Unnormalized optimal transport

被引:37
作者
Gangbo, Wilfrid [1 ]
Li, Wuchen [1 ]
Osher, Stanley [1 ]
Puthawala, Michael [1 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
关键词
Optimal transport; Unnormalized density space; Unnormalized Monge-Ampere equation; DISTANCE;
D O I
10.1016/j.jcp.2019.108940
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a oneparameter family of simple modifications of the formulation in [4]. This leads us to a new Monge-Ampere type equation and a new Kantorovich duality formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to the extended mass transfer problem gives us a simple metric for computing the distance between two unnormalized densities. The L-1 version of this metric was shown in [25] (which is a precursor of our work here) to have desirable properties. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Efficient Discretization of Optimal Transport [J].
Wang, Junqi ;
Wang, Pei ;
Shafto, Patrick .
ENTROPY, 2023, 25 (06)
[42]   Simple Unbalanced Optimal Transport [J].
Khesin, Boris ;
Modin, Klas ;
Volk, Luke .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (10) :8839-8855
[43]   Sliced optimal transport on the sphere [J].
Quellmalz, Michael ;
Beinert, Robert ;
Steidl, Gabriele .
INVERSE PROBLEMS, 2023, 39 (10)
[44]   Quadratically Regularized Optimal Transport [J].
Dirk A. Lorenz ;
Paul Manns ;
Christian Meyer .
Applied Mathematics & Optimization, 2021, 83 :1919-1949
[45]   Semidual Regularized Optimal Transport [J].
Cuturi, Marco ;
Peyre, Gabriel .
SIAM REVIEW, 2018, 60 (04) :941-965
[46]   On the Optimal Transport of Semiclassical Measures [J].
Lorenzo Zanelli .
Applied Mathematics & Optimization, 2016, 74 :325-342
[47]   Sliced Optimal Transport Sampling [J].
Paulin, Lois ;
Bonneel, Nicolas ;
Coeurjolly, David ;
Iehl, Jean-Claude ;
Webanck, Antoine ;
Desbrun, Mathieu ;
Ostromoukhov, Victor .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04)
[48]   Optimal Transport in Systems and Control [J].
Chen, Yongxin ;
Georgiou, Tryphon T. ;
Pavon, Michele .
ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 :89-113
[49]   On the Optimal Transport of Semiclassical Measures [J].
Zanelli, Lorenzo .
APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 74 (02) :325-342
[50]   Seismic imaging and optimal transport [J].
Engquist, Bjorn ;
Yang, Yunan .
COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2019, 19 (02) :95-145