Unnormalized optimal transport

被引:37
作者
Gangbo, Wilfrid [1 ]
Li, Wuchen [1 ]
Osher, Stanley [1 ]
Puthawala, Michael [1 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
关键词
Optimal transport; Unnormalized density space; Unnormalized Monge-Ampere equation; DISTANCE;
D O I
10.1016/j.jcp.2019.108940
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a oneparameter family of simple modifications of the formulation in [4]. This leads us to a new Monge-Ampere type equation and a new Kantorovich duality formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to the extended mass transfer problem gives us a simple metric for computing the distance between two unnormalized densities. The L-1 version of this metric was shown in [25] (which is a precursor of our work here) to have desirable properties. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
[31]   Dynamic Optimal Transport on Networks [J].
Burger, Martin ;
Humpert, Ina ;
Pietschmann, Jan-Frederik .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
[32]   Optimal transport and integer partitions [J].
Hohloch, Sonja .
DISCRETE APPLIED MATHEMATICS, 2015, 190 :75-85
[33]   Regularized Discrete Optimal Transport [J].
Ferradans, Sira ;
Papadakis, Nicolas ;
Peyre, Gabriel ;
Aujol, Jean-Francois .
SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (03) :1853-1882
[34]   Optimal Transport with Proximal Splitting [J].
Papadakis, Nicolas ;
Peyre, Gabriel ;
Oudet, Edouard .
SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (01) :212-238
[35]   Optimal Transport to Renyi Entropies [J].
Rioul, Olivier .
GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 :143-150
[36]   Sliced Optimal Partial Transport [J].
Bai, Yikun ;
Schmitzer, Bernhard ;
Thorpe, Matthew ;
Kolouri, Soheil .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :13681-13690
[37]   Hierarchical clustering with optimal transport [J].
Chakraborty, Saptarshi ;
Paul, Debolina ;
Das, Swagatam .
STATISTICS & PROBABILITY LETTERS, 2020, 163
[38]   Cortically Based Optimal Transport [J].
Galeotti, Mattia ;
Citti, Giovanna ;
Sarti, Alessandro .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (09) :1040-1057
[39]   Optimal Transport for Domain Adaptation [J].
Courty, Nicolas ;
Flamary, Remi ;
Tuia, Devis ;
Rakotomamonjy, Alain .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (09) :1853-1865
[40]   Quadratically Regularized Optimal Transport [J].
Lorenz, Dirk A. ;
Manns, Paul ;
Meyer, Christian .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) :1919-1949