Unnormalized optimal transport

被引:37
作者
Gangbo, Wilfrid [1 ]
Li, Wuchen [1 ]
Osher, Stanley [1 ]
Puthawala, Michael [1 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
关键词
Optimal transport; Unnormalized density space; Unnormalized Monge-Ampere equation; DISTANCE;
D O I
10.1016/j.jcp.2019.108940
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a oneparameter family of simple modifications of the formulation in [4]. This leads us to a new Monge-Ampere type equation and a new Kantorovich duality formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to the extended mass transfer problem gives us a simple metric for computing the distance between two unnormalized densities. The L-1 version of this metric was shown in [25] (which is a precursor of our work here) to have desirable properties. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Optimal reinsurance from an optimal transport perspective [J].
Acciaio, Beatrice ;
Albrecher, Hansjorg ;
Flores, Brandon Garcia .
INSURANCE MATHEMATICS & ECONOMICS, 2025, 122 :194-213
[22]   Towards optimal running timesfor optimal transport [J].
Blanchet, Jose ;
Jambulapati, Arun ;
Kent, Carson ;
Sidford, Aaron .
OPERATIONS RESEARCH LETTERS, 2024, 52
[23]   Adaptive mesh methods on compact manifolds via Optimal Transport and Optimal Information Transport [J].
Turnquist A.G.R. .
Journal of Computational Physics, 2024, 500
[24]   Immiscible color flows in optimal transport networks for image classification [J].
Lonardi, Alessandro ;
Baptista, Diego ;
De Bacco, Caterina .
FRONTIERS IN PHYSICS, 2023, 11
[25]   Quantum entropic regularization of matrix-valued optimal transport [J].
Peyre, Gabriel ;
Chizat, Lenaic ;
Vialard, Francois-Xavier ;
Solomon, Justin .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (06) :1079-1102
[26]   Optimal Transport in Reproducing Kernel Hilbert Spaces: Theory and Applications [J].
Zhang, Zhen ;
Wang, Mianzhi ;
Nehorai, Arye .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) :1741-1754
[27]   SCOTT: Shape-Location Combined Tracking with Optimal Transport [J].
Zheng, Xinye ;
Ye, Jianbo ;
Wang, James Z. ;
Li, Jia .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (02) :284-308
[28]   Cortically Based Optimal Transport [J].
Mattia Galeotti ;
Giovanna Citti ;
Alessandro Sarti .
Journal of Mathematical Imaging and Vision, 2022, 64 :1040-1057
[29]   Optimal transport on gas networks [J].
Fazeny, Ariane ;
Burger, Martin ;
Pietschmann, Jan-F. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025,
[30]   Autoregressive optimal transport models [J].
Zhu, Changbo ;
Mueller, Hans-Georg .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) :1012-1033