Unnormalized optimal transport

被引:35
作者
Gangbo, Wilfrid [1 ]
Li, Wuchen [1 ]
Osher, Stanley [1 ]
Puthawala, Michael [1 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
关键词
Optimal transport; Unnormalized density space; Unnormalized Monge-Ampere equation; DISTANCE;
D O I
10.1016/j.jcp.2019.108940
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a oneparameter family of simple modifications of the formulation in [4]. This leads us to a new Monge-Ampere type equation and a new Kantorovich duality formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to the extended mass transfer problem gives us a simple metric for computing the distance between two unnormalized densities. The L-1 version of this metric was shown in [25] (which is a precursor of our work here) to have desirable properties. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS
    Chone, Philippe
    Gozlan, Nathael
    Kramarz, Francis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (06) : 6039 - 6092
  • [2] Generalized unnormalized optimal transport and its fast algorithms
    Lee, Wonjun
    Lai, Rongjie
    Li, Wuchen
    Osher, Stanley
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
  • [3] Quantum optimal transport: an invitation
    Trevisan, Dario
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 347 - 360
  • [4] LINEARIZED OPTIMAL TRANSPORT ON MANIFOLDS*
    Sarrazin, Clement
    Schmitzer, Bernhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 4970 - 5016
  • [5] Entropic Optimal Transport on Random Graphs
    Keriven, Nicolas
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2023, 5 (04): : 1028 - 1050
  • [6] Optimal Transport With Relaxed Marginal Constraints
    Li, Jia
    Lin, Lin
    IEEE ACCESS, 2021, 9 : 58142 - 58160
  • [7] Optimal Pricing for Optimal Transport
    Bartz, Sedi
    Reich, Simeon
    SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (02) : 467 - 481
  • [8] Optimal Pricing for Optimal Transport
    Sedi Bartz
    Simeon Reich
    Set-Valued and Variational Analysis, 2014, 22 : 467 - 481
  • [9] Theoretical Analysis of Domain Adaptation with Optimal Transport
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 737 - 753
  • [10] SCALING ALGORITHMS FOR UNBALANCED OPTIMAL TRANSPORT PROBLEMS
    Chizat, Lenaic
    Peyre, Gabriel
    Schmitzer, Bernhard
    Vialard, Francois-Xavier
    MATHEMATICS OF COMPUTATION, 2018, 87 (314) : 2563 - 2609