Deep Learning for Whole Slide Image Analysis: An Overview

被引:199
作者
Dimitriou, Neofytos [1 ]
Arandjelovic, Ognjen [1 ]
Caie, Peter D. [2 ]
机构
[1] Univ St Andrews, Sch Comp Sci, St Andrews, Fife, Scotland
[2] Univ St Andrews, Sch Med, St Andrews, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
digital pathology; computer vision; oncology; cancer; machine learning; personalized pathology; image analysis; PATHOLOGY; TISSUE;
D O I
10.3389/fmed.2019.00264
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The widespread adoption of whole slide imaging has increased the demand for effective and efficient gigapixel image analysis. Deep learning is at the forefront of computer vision, showcasing significant improvements over previous methodologies on visual understanding. However, whole slide images have billions of pixels and suffer from high morphological heterogeneity as well as from different types of artifacts. Collectively, these impede the conventional use of deep learning. For the clinical translation of deep learning solutions to become a reality, these challenges need to be addressed. In this paper, we review work on the interdisciplinary attempt of training deep neural networks using whole slide images, and highlight the different ideas underlying these methodologies.
引用
收藏
页数:7
相关论文
共 53 条
[1]  
[Anonymous], 2005, PROC CVPR IEEE
[2]  
[Anonymous], 2009, Proceedings of the Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy (MICCAI Workshop)
[3]  
[Anonymous], 2018, CANC METASTASIS DETE
[4]  
[Anonymous], 2018, Terabyte-scale Deep Multiple Instance Learning for Classification and Localization in Pathology
[5]  
Aresta G, 2018, BACH GRAND CHALLENGE
[6]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[7]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[8]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[9]   Reengineering Workflow for Curation of DICOM Datasets [J].
Bennett, William ;
Smith, Kirk ;
Jarosz, Quasar ;
Nolan, Tracy ;
Bosch, Walter .
JOURNAL OF DIGITAL IMAGING, 2018, 31 (06) :783-791
[10]   Predicting Cancer with a Recurrent Visual Attention Model for Histopathology Images [J].
BenTaieb, Aicha ;
Hamarneh, Ghassan .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :129-137