Computational Discovery of Nickel-Based Catalysts for CO2 Reduction to Formic Acid

被引:39
作者
Zhao, Zhonglong [1 ]
Chen, Zhengzheng [1 ]
Lu, Gang [1 ]
机构
[1] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; OXYGEN REDUCTION; HYDROGEN EVOLUTION; ELECTROREDUCTION; STRAIN; FUEL; SELECTIVITY; CHALLENGES; CONVERSION;
D O I
10.1021/acs.jpcc.7b06895
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of CO2 into chemical fuels is crucial to clean energy production and environment remediation. First-principles calculations are performed to elucidate reaction mechanism of CO2 reduction to formic acid on Ni-based catalysts. The origin of CO poisoning is examined and a novel design strategy is proposed to eliminate CO poisoning. Three design criteria are derived based on which computational screening is performed to identify several Ni-based near-surface-alloys (NSAs) with both high selectivity and reactivity. The effect of elastic strain on CO2 reduction is studied on these NSAs. We predict that Ni/Ti, Cu/Ni, and strained Cu/Ni NSAs could lead to highly selective and efficient production of formic acid.
引用
收藏
页码:20865 / 20870
页数:6
相关论文
共 60 条
[1]   Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals [J].
Akhade, Sneha A. ;
Luo, Wenjia ;
Nie, Xiaowa ;
Bernstein, Nicole J. ;
Asthagiri, Aravind ;
Janik, Michael J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (38) :20429-20435
[2]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[3]   Design of an Active Site towards Optimal Electrocatalysis: Overlayers, Surface Alloys and Near-Surface Alloys of Cu/Pt(111) [J].
Bandarenka, Aliaksandr S. ;
Varela, Ana Sofia ;
Karamad, Mohammedreza ;
Calle-Vallejo, Federico ;
Bech, Lone ;
Perez-Alonso, Francisco J. ;
Rossmeisl, Jan ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (47) :11845-11848
[4]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[5]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[6]   ENERGY FLUCTUATIONS INDUCED BY THE NOSE THERMOSTAT [J].
BYLANDER, DM ;
KLEINMAN, L .
PHYSICAL REVIEW B, 1992, 46 (21) :13756-13761
[7]   EXCHANGE, SPIN-ORBIT, AND CORRELATION-EFFECTS IN THE SOFT-X-RAY MAGNETIC-CIRCULAR-DICHROISM SPECTRUM OF NICKEL [J].
CHEN, CT ;
SMITH, NV ;
SETTE, F .
PHYSICAL REVIEW B, 1991, 43 (08) :6785-6787
[8]   Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires [J].
Chen, Zhengzheng ;
Zhang, Xu ;
Lu, Gang .
CHEMICAL SCIENCE, 2015, 6 (12) :6829-6835
[9]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[10]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+