Robust Control for Multi-Model Planar Robots Coordination

被引:0
作者
Jimenez-Lizarraga, Manuel [1 ]
Chapa, Ricardo [1 ]
Rodriguez, Celeste [1 ]
Arellano, Hever [2 ]
Castillo, Pedro [3 ]
机构
[1] Univ Autonoma Nuevo Leon, Dept Ciencias Fis Matemat, San Nicolas, Nuevo Leon, Mexico
[2] Inst Tecnol Nuevo Leon, Guadalupe, Nuevo Leon, Mexico
[3] UTC, CNRS, Heudiasyc UMR 7253, Paris, France
来源
2015 23RD MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED) | 2015年
关键词
Zero-Sum Differential Games; Mobile Robots; Robust Control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a robust control for the coordination of planar mobile robots based on Zero-Sum uncertain differential game model. The parameters describing the dynamics of the individual robots depend on a vector of unknown parameters, which belongs to a finite parametric set, and the solution is given in terms of the worst-case scenario. Each robot control input is associated with the worst or least favourable value of the unknown parameter. Based on the concept of robust optimality, a closed form for the robust control is provided. In the proposed coordination scheme one of the robots takes the leader role following a prescribed trajectory while the others agents follow him in a robust way. A numerical example is provided to illustrate effectiveness of the approach.
引用
收藏
页码:859 / 864
页数:6
相关论文
共 23 条
  • [1] [Anonymous], AM HEL SOC 60 ANN FO
  • [2] Basar T, 1998, Dynamic Noncooperative Game Theory
  • [3] Robust maximum principle in minimax control
    Boltyansky, VG
    Poznyak, AS
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (04) : 305 - 314
  • [4] Distributed model predictive control
    Camponogara, Eduardo
    Jia, Dong
    Krogh, Bruce H.
    Talukdar, Sarosh
    [J]. IEEE Control Systems Magazine, 2002, 22 (01): : 44 - 52
  • [5] Cruz JB, 2009, ENERG POLIC POLIT PR, P1
  • [6] Desai JP, 1998, IEEE INT CONF ROBOT, P2864, DOI 10.1109/ROBOT.1998.680621
  • [7] Dubnar W., 2006, AUTOMATICA, V2, P549
  • [8] Engwerda J., 2005, LQ dynamic optimization and differential games
  • [9] On the open-loop Nash equilibrium in LQ-games
    Engwerda, JC
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1998, 22 (05) : 729 - 762
  • [10] A Differential Game Theoretic Approach for Two-Agent Collision Avoidance with Travel Limitations
    Goode, Brian J.
    Roan, Michael J.
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2012, 67 (3-4) : 201 - 218