LP error estimates and superconvergence for covolume or finite volume element methods

被引:59
作者
Chou, SH [1 ]
Kwak, DY
Li, O
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Korea Adv Inst Sci & Technol, Dept Math & Stat, Taejon, South Korea
[3] Shandong Normal Univ, Dept Math, Shandong, Peoples R China
关键词
error estimates; covolume methods; finite volume methods; superconvergence; network methods; finite volume element; ELLIPTIC PROBLEMS; DIFFUSION-EQUATIONS; SCHEMES; CONVERGENCE; GRIDS;
D O I
10.1002/num.10059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider convergence of the covolume or finite volume element solution to linear elliptic and parabolic problems. Error estimates and superconvergence results in the L-p norm, 2 less than or equal to p less than or equal to infinity, are derived. We also show second-order convergence in the L-p norm between the covolume and the corresponding finite element solutions and between their gradients. The main tools used in this article are an extension of the "supercloseness" results in Chou and Li [Math Comp 69(229) (2000), 103-120] to the L-p based spaces, duality arguments, and the discrete Green's function method. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:463 / 486
页数:24
相关论文
共 26 条
[1]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[2]  
Brenner S., 2007, The Mathematical Theory of Finite Element Methods
[3]   THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON GENERAL TRIANGULATIONS [J].
CAI, ZQ ;
MANDEL, J ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :392-402
[4]   ON THE ACCURACY OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON COMPOSITE GRIDS [J].
CAI, ZQ ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :636-655
[5]  
CHICCO M, 1971, B UNIONE MAT ITAL, V4, P374
[6]   Mixed covolume methods for elliptic problems on triangular grids [J].
Chou, SH ;
Kwak, DY ;
Vassilevski, PS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :1850-1861
[7]   A general mixed covolume framework for constructing conservative schemes for elliptic problems [J].
Chou, SH ;
Vassilevski, PS .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :991-1011
[9]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8
[10]  
Ciarlet P., 1978, The Finite Element Method for Elliptic Problems