A numerical method for solving the inverse heat conduction problem without initial value

被引:38
作者
Wang, Y. B. [2 ,3 ]
Cheng, J. [2 ,3 ]
Nakagawa, J.
Yamamoto, M. [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China
[3] Shanghai Normal Univ, Sci Comp Key Lab Shanghai Univ, Shanghai Univ E Inst, Div Computat Sci, Shanghai 200234, Peoples R China
关键词
inverse heat conduction problem; truncated Fourier series; numerical reconstruction; RECONSTRUCTION; APPROXIMATION; EQUATION;
D O I
10.1080/17415971003698615
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the inverse heat conduction problem for the one-dimensional heat equation, where we are requested to determine a boundary value at one end of a spatial interval over a time interval and an initial value by means of Cauchy data at another end. By the existing theory we can prove the uniqueness in determining both a boundary value and an initial value, and our method does not require any initial value. We test our numerical method and show stable numerical reconstruction.
引用
收藏
页码:655 / 671
页数:17
相关论文
共 29 条
[1]  
Alifanov O.M., 1994, Inverse Heat Transfer Problems
[2]  
[Anonymous], 2011, P INT C IS INIR PET
[3]  
Beck J.V., 1985, Inverse Heat Conduction: Ill-Posed Problems
[4]  
Cannon J.R., 1984, The One-Dimensional Heat Equation
[5]   NUMERICAL-SOLUTION OF THE SIDEWAYS HEAT-EQUATION BY DIFFERENCE APPROXIMATION IN TIME [J].
ELDEN, L .
INVERSE PROBLEMS, 1995, 11 (04) :913-923
[6]  
Engl H. W., 1996, REGULARIZATION INVER
[7]  
FU C, 2005, NUMER MATH J CHIN U, V14, P208
[8]  
Groetsch C.W., 1984, Chapman & Hall/CRC research notes in mathematics series
[9]  
Hao D., 1998, Methods for inverse heat conduction problems.-Peter Lang pub
[10]  
Hao Dinh Nho, 1996, J INVERSE ILL-POSE P, V3, P447