Impacts of Traverse Speed and Material Thickness on Abrasive Waterjet Contour Cutting of Austenitic Stainless Steel AISI 304L

被引:12
|
作者
Llanto, Jennifer Milaor [1 ]
Tolouei-Rad, Majid [1 ]
Vafadar, Ana [1 ]
Aamir, Muhammad [1 ]
机构
[1] Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
abrasive waterjet machining; contour cutting; traverse speed; material thickness; austenitic stainless steel; kerf taper angle; material removal rate; JET; MACHINABILITY; OPTIMIZATION; PARAMETERS; CUT;
D O I
10.3390/app11114925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825 degrees for machining curvature profile and 0.916 degrees for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm(3)/min and 751.5 mm(3)/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69-91% and 62-69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5-18% for kerf taper angle and 27-36% for material removal rate.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Analysis and Optimization of Process Parameters in Abrasive Waterjet Contour Cutting of AISI 304L
    Llanto, Jennifer Milaor
    Vafadar, Ana
    Aamir, Muhammad
    Tolouei-Rad, Majid
    METALS, 2021, 11 (09)
  • [2] A Review on Welding of AISI 304L Austenitic Stainless Steel
    Prasad, Kondapalli Siva
    Rao, Chalamalasetti Srinivasa
    Rao, Damera Nageswara
    JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION, 2014, 14 (01) : 1 - 11
  • [3] Elevated temperature material characteristics of AISI 304L stainless steel
    Towfighi, S.
    Romilly, D. P.
    Olson, J. A.
    MATERIALS AT HIGH TEMPERATURES, 2013, 30 (02) : 151 - 155
  • [4] MATERIAL MODEL PARAMETER IDENTIFICATION OF STAINLESS STEEL (AISI 304L)
    Jindra, D.
    Kala, Z.
    Seitl, S.
    Kala, J.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 246 - 249
  • [5] The effects of tool rotation speed and traverse speed on friction stir welding of AISI 304 austenitic stainless steel
    Meran, Cemal
    Canyurt, Olcay Ersel
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2011, 102 (04) : 420 - 428
  • [6] Acoustic wave propagation in austenitic stainless steel AISI 304L: Application examples
    Dahmene, F.
    Laksimi, A.
    Hariri, S.
    Herve, C.
    Jaubert, L.
    Cherfaoui, M.
    Mouftiez, A.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2012, 92 : 77 - 83
  • [7] Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel
    Martinavicius, A.
    Abrasonis, G.
    Scheinost, A. C.
    Danoix, R.
    Danoix, F.
    Stinville, J. C.
    Talut, G.
    Templier, C.
    Liedke, O.
    Gemming, S.
    Moeller, W.
    ACTA MATERIALIA, 2012, 60 (10) : 4065 - 4076
  • [8] Analysis of Fatigue Life and Crack Growth in Austenitic Stainless Steel AISI 304l
    Chelbi, Lotfi
    Hentati, Fatma
    Znaidi, Amna
    JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2023, 17 (04): : 501 - 508
  • [9] Effect of cutting process on the stress corrosion susceptibility of AISI 304L stainless steel
    Suma, M. J.
    Mahadevan, S.
    Toppo, Anita
    Albert, Shaju K.
    Kumar, S. Arun
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2020, 71 (07): : 1081 - 1090
  • [10] Spark Plasma Welding of Austenitic Stainless Steel AISI 304L to Commercially Pure Titanium
    Kumar, N. Naveen
    Ram, G. D. Janaki
    Bhattacharya, S. S.
    Dey, H. C.
    Albert, S. K.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2015, 68 : S289 - S297