Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria

被引:6
作者
Anbalagan, Pratap [1 ]
Hincal, Evren [1 ]
Ramachandran, Raja [2 ]
Baleanu, Dumitru [3 ]
Cao, Jinde [4 ,5 ]
Huang, Chuangxia [6 ]
Niezabitowski, Michal [7 ]
机构
[1] Near East Univ TRNC, Dept Math, Mersin 10, Nicosia, Turkey
[2] Alagappa Univ, Ramanujan Ctr Higher Math, Karaikkudi 630004, Tamil Nadu, India
[3] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[4] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[5] Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South Korea
[6] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[7] Silesian Tech Univ, Dept Automat Control & Robot, Fac Automat Control Elect & Comp Sci, Akademicka 16, PL-44100 Gliwice, Poland
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
synchronization stability; fractional order; complex coupled Cohen-Grossberg neural networks; Kronecker product; linear coupling delay; FINITE-TIME SYNCHRONIZATION; PINNING SYNCHRONIZATION; DYNAMICAL NETWORKS; PATTERN-FORMATION;
D O I
10.3934/math.2021172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper inspects the issues of synchronization stability and robust synchronization stability for fractional order coupled complex interconnected Cohen-Grossberg neural networks under linear coupling delays. For investigation of synchronization stability results, the comparison theorem for multiple delayed fractional order linear system is derived at first. Then, by means of given fractional comparison principle, some inequality methods, Kronecker product technique and classical Lyapunov-functional, several asymptotical synchronization stability criteria are addressed in the voice of linear matrix inequality (LMI) for the proposed model. Moreover, when parameter uncertainty exists, we also the investigate on the robust synchronization stability criteria for complex structure on linear coupling delayed Cohen-Grossberg type neural networks. At last, the validity of the proposed analytical results are performed by two computer simulations.
引用
收藏
页码:2844 / 2873
页数:30
相关论文
共 48 条
[1]  
[Anonymous], 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[2]   Medical therapy for atherosclerotic cardiovascular disease in patients with myocardial injury after non-cardiac surgery [J].
Chen, Jin F. ;
Smilowitz, Nathaniel R. ;
Kim, Jung T. ;
Cuff, Germaine ;
Boltunova, Alina ;
Toffey, Jason ;
Berger, Jeffrey S. ;
Rosenberg, Andrew ;
Kendale, Samir .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2019, 279 :1-5
[3]   Stability and synchronization of fractional-order memristive neural networks with multiple delays [J].
Chen, Liping ;
Cao, Jinde ;
Wu, Ranchao ;
Tenreiro Machado, J. A. ;
Lopes, Antonio M. ;
Yang, Hejun .
NEURAL NETWORKS, 2017, 94 :76-85
[4]   A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization [J].
Cheng, Jun ;
Park, Ju H. ;
Cao, Jinde ;
Qi, Wenhai .
NONLINEAR DYNAMICS, 2020, 100 (01) :509-521
[5]  
CHUA LO, 1988, IEEE T CIRCUITS SYST, V35, P1273, DOI 10.1109/31.7601
[6]   ABSOLUTE STABILITY OF GLOBAL PATTERN-FORMATION AND PARALLEL MEMORY STORAGE BY COMPETITIVE NEURAL NETWORKS [J].
COHEN, MA ;
GROSSBERG, S .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05) :815-826
[7]  
Duan L., 2020, CHAOS SOLITON FRACT, DOI 10.1016 j.chaos.2020.110386
[8]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659
[9]   Fractional-Order Circuits and Systems: An Emerging Interdisciplinary Research Area [J].
Elwakil, Ahmed S. .
IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2010, 10 (04) :40-50
[10]  
Gorenflo R., 2014, Mittag-Leffler Functions, Related Topics and Applications, DOI DOI 10.1007/978-3-662-43930-2