Dimensional regularization of the path integral in curved space on an infinite time interval

被引:26
作者
Bastianelli, F
Corradini, O
van Nieuwenhuizen, P
机构
[1] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[3] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
关键词
D O I
10.1016/S0370-2693(00)00978-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use dimensional regularization to evaluate quantum mechanical path integrals in arbitrary curved spaces on an infinite time interval. We perform 3-loop calculations in Riemann normal coordinates, and 2-loop calculations in general coordinates. It is shown that one only needs a covariant two-loop counterterm (V-DR = (h2)/R-8) to obtain the same results as obtained earlier in other regularization schemes. It is also shown that the mass term needed in order to avoid infrared divergences explicitly breaks general covariance in the final result. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:154 / 162
页数:9
相关论文
共 20 条
[1]   Mode regularization, time slicing, Weyl ordering, and phase space path integrals for quantum-mechanical nonlinear sigma models [J].
Bastianelli, F ;
Schalm, K ;
van Nieuwenhuizen, P .
PHYSICAL REVIEW D, 1998, 58 (04)
[2]   THE PATH INTEGRAL FOR A PARTICLE IN CURVED SPACES AND WEYL ANOMALIES [J].
BASTIANELLI, F .
NUCLEAR PHYSICS B, 1992, 376 (01) :113-126
[3]   Mode regularization of the configuration space path integral in curved space [J].
Bastianelli, F ;
Corradini, O .
PHYSICAL REVIEW D, 1999, 60 (04)
[4]   TRACE ANOMALIES FROM QUANTUM-MECHANICS [J].
BASTIANELLI, F ;
VANNIEUWENHUIZEN, P .
NUCLEAR PHYSICS B, 1993, 389 (01) :53-80
[5]   LOOP CALCULATIONS IN QUANTUM-MECHANICAL NONLINEAR SIGMA-MODELS [J].
DEBOER, J ;
PEETERS, B ;
SKENDERIS, K ;
VANNIEUWENHUIZEN, P .
NUCLEAR PHYSICS B, 1995, 446 (1-2) :211-222
[6]   Loop calculations in quantum mechanical non-linear sigma models with fermions and applications to anomalies [J].
deBoer, J ;
Peeters, B ;
Skenderis, K ;
vanNieuwenhuizen, P .
NUCLEAR PHYSICS B, 1996, 459 (03) :631-692
[7]  
DEWITT BS, 1992, SUPERMANIFOLS
[8]  
Feynman Richard P., 2010, Quantum Mechanics and Path Integrals
[9]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[10]   POINT CANONICAL TRANSFORMATIONS IN PATH INTEGRAL [J].
GERVAIS, JL ;
JEVICKI, A .
NUCLEAR PHYSICS B, 1976, 110 (01) :93-112