Computing the Clique-Width on Series-Parallel Graphs

被引:0
作者
Antonio Lopez-Medina, Marco [1 ]
Leonardo Gonzalez-Ruiz, J. [1 ]
Raymundo Marcial-Romero, J. [1 ]
Hernandez, J. A. [1 ]
机构
[1] Univ Autonoma Estado Mexico, Fac Ingn, Toluca De Lerdo, Mexico
来源
COMPUTACION Y SISTEMAS | 2022年 / 26卷 / 02期
关键词
Graph theory; clique-width; tree-width; complexity; series-parallel;
D O I
10.13053/CyS-26-2-4250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The clique-width (cwd) is an invariant of graphs which, similar to other invariants like the tree-width (twd) establishes a parameter for the complexity of a problem. For example, several problems with bounded clique-width can be solved in polynomial time. There is a well known relation between tree-width and clique-width denoted as cwd(G) <= 3 center dot 2(twd(G)-1). Serial-parallel graphs have tree-width of at most 2, so its clique-width is at most 6 according to the previous relation. In this paper, we improve the bound for this particular case, showing that the clique-width of series-parallel graphs is smaller or equal to 5.
引用
收藏
页码:815 / 822
页数:8
相关论文
共 50 条
  • [31] On powers of graphs of bounded NLC-width (clique-width)
    Suchana, Karol
    Todinca, Ioan
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (14) : 1885 - 1893
  • [32] MSOL partitioning problems on graphs of bounded treewidth and clique-width
    Rao, Michael
    THEORETICAL COMPUTER SCIENCE, 2007, 377 (1-3) : 260 - 267
  • [33] Induced Minor Free Graphs: Isomorphism and Clique-width
    Belmonte, Remy
    Otachi, Yota
    Schweitzer, Pascal
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2016, 9224 : 299 - 311
  • [34] Induced Minor Free Graphs: Isomorphism and Clique-Width
    Rémy Belmonte
    Yota Otachi
    Pascal Schweitzer
    Algorithmica, 2018, 80 : 29 - 47
  • [35] On the linear structure and clique-width of bipartite permutation graphs
    Brandstädt, A
    Lozin, VV
    ARS COMBINATORIA, 2003, 67 : 273 - 281
  • [36] A local characterization of bounded clique-width for line graphs
    Gurski, Frank
    Wanke, Egon
    DISCRETE MATHEMATICS, 2007, 307 (06) : 756 - 759
  • [37] Clique-width of point configurations
    Cagirici, Onur
    Hlineny, Petr
    Pokryvka, Filip
    Sankaran, Abhisekh
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 43 - 73
  • [38] The relative clique-width of a graph
    Lozin, Vadim
    Rautenbach, Dieter
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 846 - 858
  • [39] Treelength of series-parallel graphs?
    Dissaux, Thomas
    Ducoffe, Guillaume
    Nisse, Nicolas
    Nivelle, Simon
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 16 - 30
  • [40] CLIQUE-WIDTH IS NP-COMPLETE
    Fellows, Michael R.
    Rosamond, Frances A.
    Rotics, Udi
    Szeider, Stefan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 909 - 939