Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

被引:45
作者
Nogueira, Daniele R. [1 ]
Mitjans, Montserrat [2 ,3 ]
Rolim, Clarice M. B. [1 ]
Pilar Vinardell, M. [2 ,3 ]
机构
[1] Univ Fed Santa Maria, Dept Farm Ind, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Barcelona, Fac Farm, Dept Fisiol, E-08028 Barcelona, Spain
[3] CSIC, Unidad Asociada, E-08028 Barcelona, Spain
关键词
in vitro methods; cytotoxicity; nanomaterials; cell culture; nanosafety; LYSINE-BASED SURFACTANTS; DRUG-DELIVERY SYSTEM; ZINC-OXIDE NANOPARTICLES; SILVER NANOPARTICLES; SILICA NANOPARTICLES; INFLAMMATORY RESPONSES; TITANIUM-DIOXIDE; OXIDATIVE STRESS; GOLD NANOPARTICLES; REACTIVE OXYGEN;
D O I
10.3390/nano4020454
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures.
引用
收藏
页码:454 / 484
页数:31
相关论文
共 127 条
[1]   Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite [J].
Abdel-Mohsen, A. M. ;
Abdel-Rahman, Rasha M. ;
Fouda, Moustafa M. G. ;
Vojtova, L. ;
Uhrova, L. ;
Hassan, A. F. ;
Al-Deyab, Salem S. ;
El-Shamy, Ibrahim E. ;
Jancar, J. .
CARBOHYDRATE POLYMERS, 2014, 102 :238-245
[2]  
Ai Jafar, 2011, Int J Nanomedicine, V6, P1117, DOI 10.2147/IJN.S16603
[3]   Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells [J].
Akhtar, Mohd Javed ;
Ahamed, Maqusood ;
Kumar, Sudhir ;
Siddiqui, Huma ;
Patil, Govil ;
Ashquin, Mohd ;
Ahmad, Iqbal .
TOXICOLOGY, 2010, 276 (02) :95-102
[4]   MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles [J].
Al Faraj, Achraf ;
Shaik, Asma Sultana ;
Afzal, Sibtain ;
Al Sayed, Baraa ;
Halwani, Rabih .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 :1491-1503
[5]   Orientation of N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS studies [J].
Anuratha, M. ;
Jawahar, A. ;
Umadevi, M. ;
Sathe, V. G. ;
Vanelle, P. ;
Terme, T. ;
Meenakumari, V. ;
Benial, A. Milton Franklin .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2014, 131 :261-267
[6]   Rhodamine 123 as a probe of mitochondrial membrane potential:: evaluation of proton flux through F0 during ATP synthesis [J].
Baracca, A ;
Sgarbi, G ;
Solaini, G ;
Lenaz, G .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2003, 1606 (1-3) :137-146
[7]  
Berridge MV, 2005, BIOTECHNOL ANN REV, V11, P127, DOI 10.1016/S1387-2656(05)11004-7
[8]   The potential risks of nanomaterials: a review carried out for ECETOC [J].
Borm, Paul J. A. ;
Robbins, David ;
Haubold, Stephan ;
Kuhlbusch, Thomas ;
Fissan, Heinz ;
Donaldson, Ken ;
Schins, Roel ;
Stone, Vicki ;
Kreyling, Wolfgang ;
Lademann, Jurgen ;
Krutmann, Jean ;
Warheit, David ;
Oberdorster, Eva .
PARTICLE AND FIBRE TOXICOLOGY, 2006, 3 (01)
[9]   Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation [J].
Boverhof, Darrell R. ;
David, Raymond M. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (03) :953-961
[10]   Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways [J].
Chairuangkitti, Porntipa ;
Lawanprasert, Somsong ;
Roytrakul, Sittiruk ;
Aueviriyavit, Sasitorn ;
Phummiratch, Duangkamol ;
Kulthong, Kornphimol ;
Chanvorachote, Pithi ;
Maniratanachote, Rawiwan .
TOXICOLOGY IN VITRO, 2013, 27 (01) :330-338