PARAMETERIZING HITCHIN COMPONENTS

被引:19
作者
Bonahon, Francis [1 ]
Dreyer, Guillaume [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
REAL PROJECTIVE-STRUCTURES; SURFACE GROUPS; REPRESENTATIONS; SPACES;
D O I
10.1215/0012794-2838654
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a geometric, real-analytic parameterization of the Hitchin component Hit(n)(S) of the PSLn(R)-character variety R-PSLn (R)(S) of a closed surface S. The approach is explicit and constructive. In essence, our parameterization is an extension of Thurston 's shearing coordinates for the Teichmiiller space of a closed surface, combined with Fock-Goncharov's coordinates for the moduli space of positive framed local systems of a punctured surface. More precisely, given a maximal geodesic lamination lambda subset of S with finitely many leaves, we introduce two types of invariants for elements of the Hitchin component: shear invariants associated with each leaf of lambda and triangle invariants associated with each component of the complement S - lambda. We describe identities and relations satisfied by these invariants, and we use the resulting coordinates to parameterize the Hitchin component.
引用
收藏
页码:2935 / 2975
页数:41
相关论文
共 23 条
[1]  
[Anonymous], 2001, Contemp. Math.
[2]  
[Anonymous], 1994, ERGEBNISSE DER MATHE, DOI DOI 10.1007/978-3-642-57916-5.MR1304906
[3]  
[Anonymous], 2006, TEICHMULLER THEORY A
[4]   Parabolic Higgs bundles and Teichmuller spaces for punctured surfaces [J].
Biswas, I ;
AresGastesi, P ;
Govindarajan, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (04) :1551-1560
[5]  
Bonahon F., 1996, Ann. Fac. Sci. Toulouse Math., V5, P233
[6]  
BONAHON F., ARXIV14100729MATHGT
[7]  
BRIDGEMAN M., ARXIV13017459V3MATHD
[8]  
Casson A.J., 1988, AUTOMORPHISMS SURFAC, V9, DOI DOI 10.1017/CBO9780511623912
[9]   CONVEX REAL PROJECTIVE-STRUCTURES ON CLOSED SURFACES ARE CLOSED [J].
CHOI, S ;
GOLDMAN, WM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :657-661
[10]   Length functions of Hitchin representations [J].
Dreyer, Guillaume .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (06) :3153-3173