Sequences of Independent Functions in Rearrangement Invariant Spaces

被引:0
作者
Astashkin, S., V [1 ]
机构
[1] Samara Natl Res Univ, Samara, Russia
关键词
rearrangement invariant space; Rademacher functions; independent functions; Orlicz space; Luxemburg norm; 517; 982; 22;
D O I
10.1134/S0037446621020014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain some new estimates that show the extremality of the Rademacher system in the set of sequences of independent functions considered in rearrangement invariant spaces.
引用
收藏
页码:189 / 198
页数:10
相关论文
共 18 条
[1]  
Astashkin S., 2020, The Rademacher System in Function Spaces, DOI [10.1007/978-3-030-47890-2, DOI 10.1007/978-3-030-47890-2]
[2]  
Bennett C., 1988, INTERPOLATION OPERAT
[3]  
Bergh J., 1976, Interpolation spaces. An introduction
[4]  
Braverman MSh., 1994, INDEPENDENT RANDOM V, DOI [10.1017/CBO9780511662348, DOI 10.1017/CBO9780511662348]
[5]  
Brudnyi Yu. A., 1991, INTERPOLATION FUNCTO
[6]  
CALDERON AP, 1966, STUD MATH, V26, P273
[7]   Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities [J].
Figiel, T ;
Hitczenko, P ;
Johnson, WB ;
Schechtman, G ;
Zinn, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (03) :997-1027
[8]  
GOYVAERT.DL, 1973, LINGUISTICS, P5
[9]   Tangent sequences in Orlicz and rearrangement invariant spaces [J].
Hitczenko, P ;
MontgomerySmith, SJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 :91-101
[10]  
JOHNSON WB, 1979, MEM AM MATH SOC, V19, P1