Controllability of Affine Control Systems on Lie Groups

被引:2
作者
Kule, Memet [1 ]
机构
[1] Kilis 7 Aralik Univ, Fac Arts & Sci, Dept Math, TR-79000 Kilis, Turkey
关键词
Affine Control systems; Lie groups; Lie algebra;
D O I
10.1007/s00009-015-0522-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the controllability problem of affine control systems on several Lie groups. For this kind of class of control systems, we establish controllability results and give in a list of affine control systems on different Lie groups.
引用
收藏
页码:873 / 882
页数:10
相关论文
共 15 条
[1]  
Ayala V., 1999, Am. Math. Soc. Ser. Symp. Pure Math, V64, P47
[2]  
Ayala V., 1995, GEOMETRY NONLINEAR C, V32, P35
[3]  
Ayala V., 2000, P 2 NONL CONTR NETW
[4]   Isochronous sets of invariant control systems [J].
Ayala, Victor ;
Kliemann, Wolfgang ;
Vera, Fernando .
SYSTEMS & CONTROL LETTERS, 2011, 60 (12) :937-942
[5]   On subsemigroups of semisimple Lie groups [J].
ElAssoudi, R ;
Gauthier, JP ;
Kupka, IAK .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (01) :117-133
[6]  
Humphreys J.E., 1972, INTRO LIE ALGEBRAS R
[7]   EQUIVALENCE OF CONTROL SYSTEMS WITH LINEAR SYSTEMS ON LIE GROUPS AND HOMOGENEOUS SPACES [J].
Jouan, Philippe .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (04) :956-973
[8]   CONTROLLABILITY PROPERTIES OF AFFINE SYSTEMS [J].
JURDJEVIC, V ;
SALLET, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (03) :501-508
[9]  
Jurdjevic V., 1997, Geometric Control Theory
[10]  
Kara A, 2010, INT J CONT MATH SCI, V5, P2167