Modelling fracture on polyolefin fibre reinforced concrete specimens subjected to mixed-mode loading

被引:20
作者
Suarez, F. [1 ]
Galvez, J. C. [2 ]
Enfedaque, A. [2 ]
Alberti, M. G. [2 ]
机构
[1] Univ Jaen, Dept Ingn Mecan & Minera, Campus Cientif Tecnol Linares, Jaen 23700, Spain
[2] Univ Politecn Madrid, Dept Ingn Civil Construct, ETSI Caminos Canales & Puertos, C Prof Aranguren S-N, E-28040 Madrid, Spain
关键词
Mixed-mode fracture; Fibre-reinforced concrete; Polyolefin fibres; Embedded cohesive crack model; FINITE-ELEMENT-ANALYSIS; CRACK MODEL; STEEL; BEHAVIOR; ORIENTATION; PREDICTION;
D O I
10.1016/j.engfracmech.2019.02.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In recent years, polyolefin fibres have proved a remarkable performance as reinforcement of concrete, which has inspired a number of studies involving, among others, the simulation of fracture on polyolefin fibre reinforced concrete (PFRC) specimens. Fracture has been successfully reproduced on PFRC specimens in the past by means of an embedded crack model with a trilinear softening function, but always using for comparison the classical three-point bending test, which employs a symmetrical setup and induces fracture under pure mode I conditions. In the present study, six sets of specimens tested under an alternative setup of the three-point bending test, which induces fracture under mixed-mode conditions (I and II), are simulated using the same numerical approach. The results not only prove that the use of a trilinear softening function together with an embedded cohesive crack approach can reproduce fracture under mixed-mode conditions, but also provide interesting insights on how the trilinear softening function may be designed for suiting the usage of different fibre lengths or varying the proportions of polyolefin fibres.
引用
收藏
页码:244 / 253
页数:10
相关论文
共 32 条
[1]   A review on the assessment and prediction of the orientation and distribution of fibres for concrete [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. .
COMPOSITES PART B-ENGINEERING, 2018, 151 :274-290
[2]   Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. .
COMPOSITE STRUCTURES, 2017, 171 :317-325
[3]   Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. ;
Reyes, E. .
COMPOSITES PART B-ENGINEERING, 2017, 111 :200-210
[4]   On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. .
CEMENT & CONCRETE COMPOSITES, 2017, 77 :29-48
[5]   Fibre distribution and orientation of macro-synthetic polyolefin fibre reinforced concrete elements [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. ;
Agrawal, V. .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 122 :505-517
[6]   Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. ;
Ferreras, A. .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 112 :607-622
[7]   Reliability of polyolefin fibre reinforced concrete beyond laboratory sizes and construction procedures [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. ;
Agrawal, V. .
COMPOSITE STRUCTURES, 2016, 140 :506-524
[8]   Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. .
ENGINEERING FRACTURE MECHANICS, 2016, 154 :225-244
[9]   Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. ;
Canovas, M. F. ;
Osorio, I. R. .
MATERIALS & DESIGN, 2014, 60 :57-65
[10]   On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete [J].
Alberti, M. G. ;
Enfedaque, A. ;
Galvez, J. C. .
CONSTRUCTION AND BUILDING MATERIALS, 2014, 55 :274-288