Calibration of a microdialysis sensor and recursive glucose level estimation in ICU patients using Kalman and particle filtering

被引:3
作者
Charalampidis, Alexandros C. [1 ]
Pontikis, Konstantinos [2 ]
Mitsis, Georgios D. [3 ,4 ]
Dimitriadis, George [5 ,6 ]
Lampadiari, Vaia [5 ,6 ]
Marmarelis, Vasilis Z. [7 ]
Armaganidis, Apostolos [2 ]
Papavassilopoulos, George P. [1 ]
机构
[1] Natl Tech Univ Athens, GR-10682 Athens, Greece
[2] Univ Athens, Sch Med, Dept Crit Care 2, GR-10679 Athens, Greece
[3] Univ Cyprus, Dept Elect & Comp Engn, KIOS Res Ctr Intelligent Syst & Networks, CY-1678 Nicosia, Cyprus
[4] McGill Univ, Dept Bioengn, Montreal, PQ, Canada
[5] Univ Athens, Sch Med, Attikon Univ Hosp, Dept Internal Med 2,Res Inst, GR-10679 Athens, Greece
[6] Univ Athens, Sch Med, Attikon Univ Hosp, Ctr Diabet, GR-10679 Athens, Greece
[7] Univ So Calif, Los Angeles, CA USA
关键词
Continuous glucose monitoring systems; Artificial Pancreas; Kalman filtering; Particle filtering; Stochastic models; Intensive care unit; NONLINEAR-SYSTEMS; MINIMAL-MODEL; INSULIN;
D O I
10.1016/j.bspc.2015.11.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper deals with the estimation of glucose levels in ICU patients by the application of statistical filter theory to the data provided by a commercial continuous glucose monitoring system using a microdialysis sensor. Kalman and particle filtering are applied to simple models of the glucose dynamics. The particle filter enables the joint filtering and calibration of the sensor. The results show that the proposed filters lead to significant reduction in the estimation error with computational cost well within the capabilities of modern digital equipment. Additionally, the filters can be used for the automatic recognition of sensor faults. These results show that suitable filters can help in the construction of an artificial pancreas. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 47 条
[1]  
Anderson B. D., 2012, OPTIMAL FILTERING
[2]  
[Anonymous], THESIS NATL TU ATHEN
[3]  
[Anonymous], INTRO SEQUENTIAL MON
[4]  
[Anonymous], 2009, ADAPTIVE FILTERING P
[5]  
[Anonymous], 380 CUEDFINFENFTR
[6]  
[Anonymous], 2007, Diabetes Atlas, V3rd
[7]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[8]  
Ash R. B., 2008, BASIC PROBABILITY TH
[9]  
Bayes T., 1763, PHILOS T ROY SOC LON, V53, P370, DOI DOI 10.1098/RSTL.1763.0053
[10]  
Bequette B Wayne, 2010, J Diabetes Sci Technol, V4, P404