Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model

被引:45
作者
Emura, Takeshi [1 ]
Nakatochi, Masahiro [2 ]
Matsui, Shigeyuki [3 ]
Michimae, Hirofumi [4 ]
Rondeau, Virginie [5 ]
机构
[1] Natl Cent Univ, Grad Inst Stat, Zhongda Rd, Taoyuan 32001, Taiwan
[2] Nagoya Univ Hosp, Ctr Adv Med & Clin Res, Stat Anal Sect, Nagoya, Aichi, Japan
[3] Nagoya Univ, Dept Biostat, Grad Sch Med, Nagoya, Aichi, Japan
[4] Kitasato Univ, Sch Pharm, Dept Clin Med Biostat, Tokyo, Japan
[5] Univ Bordeaux, INSERM CR Biostat 1219, Bordeaux, France
关键词
Compound covariate; copula; dependent censoring; risk prediction; semi-competing risk; surrogate endpoint; PROSTATE-CANCER RECURRENCE; RANDOMIZED CLINICAL-TRIALS; LONG-TERM SURVIVAL; BREAST-CANCER; EXPRESSION PROFILES; LUNG ADENOCARCINOMA; CROSS-VALIDATION; MICROARRAY DATA; GASTRIC-CANCER; OVARIAN-CANCER;
D O I
10.1177/0962280216688032
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.
引用
收藏
页码:2842 / 2858
页数:17
相关论文
共 60 条
[31]   Dynamic prediction of risk of death using history of cancer recurrences in joint frailty models [J].
Mauguen, Audrey ;
Rachet, Bernard ;
Mathoulin-Pelissier, Simone ;
MacGrogan, Gaetan ;
Laurent, Alexandre ;
Rondeau, Virginie .
STATISTICS IN MEDICINE, 2013, 32 (30) :5366-5380
[32]   Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death [J].
Mazroui, Yassin ;
Mauguen, Audrey ;
Mathoulin-Pelissier, Simone ;
MacGrogan, Gaetan ;
Brouste, Veronique ;
Rondeau, Virginie .
LIFETIME DATA ANALYSIS, 2016, 22 (02) :191-215
[33]   Prediction of cancer outcome with microarrays: a multiple random validation strategy [J].
Michiels, S ;
Koscielny, S ;
Hill, C .
LANCET, 2005, 365 (9458) :488-492
[34]   Surrogate endpoints for overall survival in locally advanced head and neck cancer: meta-analyses of individual patient data [J].
Michiels, Stefan ;
Le Maitre, Aurelie ;
Buyse, Marc ;
Burzykowski, Tomasz ;
Maillard, Emilie ;
Bogaerts, Jan ;
Vermorken, Jan B. ;
Budach, Wilfried ;
Pajak, Thomas F. ;
Ang, Kian K. ;
Bourhis, Jean ;
Pignon, Jean-Pierre .
LANCET ONCOLOGY, 2009, 10 (04) :341-350
[35]  
Nelsen R. B., 2006, An introduction to copulas
[36]   Disease-Free Survival as a Surrogate for Overall Survival in Adjuvant Trials of Gastric Cancer: A Meta-Analysis [J].
Oba, Koji ;
Paoletti, Xavier ;
Alberts, Steven ;
Bang, Yung-Jue ;
Benedetti, Jacqueline ;
Bleiberg, Harry ;
Catalano, Paul ;
Lordick, Florian ;
Michiels, Stefan ;
Morita, Satoshi ;
Ohashi, Yasuo ;
Pignon, Jean-pierre ;
Rougier, Philippe ;
Sasako, Mitsuru ;
Sakamoto, Junichi ;
Sargent, Daniel ;
Shitara, Kohei ;
Cutsem, Eric Van ;
Buyse, Marc ;
Burzykowski, Tomasz .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2013, 105 (21) :1600-1607
[37]   The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer [J].
Popple, A. ;
Durrant, L. G. ;
Spendlove, I. ;
Rolland, P. ;
Scott, I. V. ;
Deen, S. ;
Ramage, J. M. .
BRITISH JOURNAL OF CANCER, 2012, 106 (07) :1306-1313
[38]   Joint latent class models for longitudinal and time-to-event data: A review [J].
Proust-Lima, Cecile ;
Sene, Mbery ;
Taylor, Jeremy M. G. ;
Jacqmin-Gadda, Helene .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (01) :74-90
[39]   Long-term survival with non-proportional hazards: results from the Dutch Gastric cancer Trial [J].
Putter, H ;
Sasako, M ;
Hartgrink, HH ;
van de Velde, CJH ;
van Houwelingen, JC .
STATISTICS IN MEDICINE, 2005, 24 (18) :2807-2821
[40]   A paradigm for class prediction using gene expression profiles [J].
Radmacher, MD ;
McShane, LM ;
Simon, R .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (03) :505-511