Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model

被引:45
作者
Emura, Takeshi [1 ]
Nakatochi, Masahiro [2 ]
Matsui, Shigeyuki [3 ]
Michimae, Hirofumi [4 ]
Rondeau, Virginie [5 ]
机构
[1] Natl Cent Univ, Grad Inst Stat, Zhongda Rd, Taoyuan 32001, Taiwan
[2] Nagoya Univ Hosp, Ctr Adv Med & Clin Res, Stat Anal Sect, Nagoya, Aichi, Japan
[3] Nagoya Univ, Dept Biostat, Grad Sch Med, Nagoya, Aichi, Japan
[4] Kitasato Univ, Sch Pharm, Dept Clin Med Biostat, Tokyo, Japan
[5] Univ Bordeaux, INSERM CR Biostat 1219, Bordeaux, France
关键词
Compound covariate; copula; dependent censoring; risk prediction; semi-competing risk; surrogate endpoint; PROSTATE-CANCER RECURRENCE; RANDOMIZED CLINICAL-TRIALS; LONG-TERM SURVIVAL; BREAST-CANCER; EXPRESSION PROFILES; LUNG ADENOCARCINOMA; CROSS-VALIDATION; MICROARRAY DATA; GASTRIC-CANCER; OVARIAN-CANCER;
D O I
10.1177/0962280216688032
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.
引用
收藏
页码:2842 / 2858
页数:17
相关论文
共 60 条
[1]   Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment [J].
Alizadeh, Ash A. ;
Gentles, Andrew J. ;
Alencar, Alvaro J. ;
Liu, Chih Long ;
Kohrt, Holbrook E. ;
Houot, Roch ;
Goldstein, Matthew J. ;
Zhao, Shuchun ;
Natkunam, Yasodha ;
Advani, Ranjana H. ;
Gascoyne, Randy D. ;
Briones, Javier ;
Tibshirani, Robert J. ;
Myklebust, June H. ;
Plevritis, Sylvia K. ;
Lossos, Izidore S. ;
Levy, Ronald .
BLOOD, 2011, 118 (05) :1350-1358
[2]   Time-varying effect and long-term survival analysis in breast cancer patients treated with neoadjuvant chemotherapy [J].
Baulies, S. ;
Belin, L. ;
Mallon, P. ;
Senechal, C. ;
Pierga, J-Y ;
Cottu, P. ;
Sablin, M-P ;
Sastre, X. ;
Asselain, B. ;
Rouzier, R. ;
Reyal, F. .
BRITISH JOURNAL OF CANCER, 2015, 113 (01) :30-36
[3]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[4]   Variables with time-varying effects and the Cox model: Some statistical concepts illustrated with a prognostic factor study in breast cancer [J].
Bellera, Carine A. ;
MacGrogan, Gaetan ;
Debled, Marc ;
de lara, Christine Tunon ;
Brouste, Veronique ;
Mathoulin-Pelissier, Simone .
BMC MEDICAL RESEARCH METHODOLOGY, 2010, 10
[5]   Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models [J].
Binder, Harald ;
Schumacher, Martin .
BMC BIOINFORMATICS, 2008, 9 (1)
[6]   Predicting survival from microarray data -: a comparative study [J].
Bovelstad, H. M. ;
Nygard, S. ;
Storvold, H. L. ;
Aldrin, M. ;
Borgan, O. ;
Frigessi, A. ;
Lingjaerde, O. C. .
BIOINFORMATICS, 2007, 23 (16) :2080-2087
[7]   Survival prediction from clinico-genomic models - a comparative study [J].
Bovelstad, Hege M. ;
Nygard, Stale ;
Borgan, Ornulf .
BMC BIOINFORMATICS, 2009, 10
[8]   Validation of surrogate end points in multiple randomized clinical trials with failure time end points [J].
Burzykowski, T ;
Molenberghs, G .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2001, 50 :405-422
[9]  
Burzykowski T, 2005, The evaluation of surrogate endpoints
[10]   Survival Is Not a Good Outcome for Randomized Trials With Effective Subsequent Therapies [J].
Buyse, Marc ;
Sargent, Daniel J. ;
Saad, Everardo D. .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (35) :4719-4720