Robust parameter estimation in a model for glucose kinetics in type 1 diabetes subjects

被引:0
作者
Palerm, Cesar C. [1 ,2 ,3 ]
Rodriguez-Fernandez, Maria [4 ]
Bevier, Wendy C. [3 ]
Zisser, Howard [3 ]
Banga, Julio R. [4 ]
Jovanovic, Lois [2 ,3 ]
Doyle, Francis J., III [1 ,2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Biomol Sci & Engn Program, Santa Barbara, CA 93106 USA
[3] Sansum Diabetes Res Inst, Santa Barbara, CA 93105 USA
[4] Proc Engn Grp, IIM, CSI, E-36208 Vigo, Spain
来源
2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15 | 2006年
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
There is a significant push to develop closed-loop control systems to deliver insulin for type 1 diabetic subjects. As part of this process, mathematical models are required to test and validate the proposed algorithms. There are several published physiology-based models of glucose and insulin dynamics in the literature, however, all of them were derived using data from subjects without diabetes. For this particular study we have selected one of the recently published models, by Hovorka et al. [1], replacing the subcutaneous insulin infusion model with the one described by Wilinska et al. [2]. Five subjects with type 1 diabetes underwent a hyperinsulinemic-euglycemic clamp with a meal challenge and corresponding subcutaneous insulin bolus. The data collected were used to fit the model parameters using global optimization methods. Our results show that the model is capable of describing the observed dynamics for type 1 subjects under the experimental conditions, and as such can be used to simulate subject behavior under the experimental conditions.
引用
收藏
页码:3257 / +
页数:2
相关论文
共 19 条
[1]   The subcutaneous route to insulin-dependent diabetes therapy [J].
Bellazzi, R ;
Nucci, G ;
Cobelli, C .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (01) :54-64
[2]  
Bequette B Wayne, 2005, Diabetes Technol Ther, V7, P28, DOI 10.1089/dia.2005.7.28
[3]  
BEVIER WC, 2006, UNPUB DIABETES METAB
[4]  
DEFRONZO RA, 1979, AM J PHYSIOL, V237, pE214
[5]   Iterative approach to model identification of biological networks [J].
Gadkar, KG ;
Gunawan, R ;
Doyle, FJ .
BMC BIOINFORMATICS, 2005, 6 (1)
[6]  
Gavin JR, 1999, DIABETES CARE, V22, pS5
[7]   Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes [J].
Hovorka, R ;
Canonico, V ;
Chassin, LJ ;
Haueter, U ;
Massi-Benedetti, M ;
Federici, MO ;
Pieber, TR ;
Schaller, HC ;
Schaupp, L ;
Vering, T ;
Wilinska, ME .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (04) :905-920
[8]  
Lang V, 1999, AM J CLIN NUTR, V69, P1183
[9]   Parameter estimation in biochemical pathways: A comparison of global optimization methods [J].
Moles, CG ;
Mendes, P ;
Banga, JR .
GENOME RESEARCH, 2003, 13 (11) :2467-2474
[10]   Relationship between HbA1c level and peripheral arterial disease [J].
Muntner, P ;
Wildman, RP ;
Reynolds, K ;
DeSalvo, KB ;
Chen, J ;
Fonseca, V .
DIABETES CARE, 2005, 28 (08) :1981-1987