A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer's Disease

被引:4
|
作者
Velez, Jorge I. [1 ]
Samper, Luiggi A. [2 ]
Arcos-Holzinger, Mauricio [3 ]
Espinosa, Lady G. [4 ]
Isaza-Ruget, Mario A. [4 ]
Lopera, Francisco [5 ]
Arcos-Burgos, Mauricio [3 ]
机构
[1] Univ Norte, Dept Ind Engn, Barranquilla 081007, Colombia
[2] Univ Norte, Dept Publ Hlth, Barranquilla 081007, Colombia
[3] Univ Antioquia, Inst Invest Med, Fac Med, Dept Psiquiatria,Grp Invest Psiquiatria GIPSI, Medellin 050010, Colombia
[4] Fdn Univ Sanitas, INPAC Res Grp, Bogota 111321, Colombia
[5] Univ Antioquia, Neurosci Res Grp, Medellin 050010, Colombia
关键词
age of onset; machine learning; Alzheimer's disease; genetic isolates; PSEN1; predictive genomics; natural history; MILD COGNITIVE IMPAIRMENT; MENTAL-DISORDERS; GENETIC RISK; DEMENTIA; MUTATION; CLASSIFICATION; ARCHITECTURE; PROGRESSION; PREVALENCE; CONVERSION;
D O I
10.3390/diagnostics11050887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer's disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R-2), and the mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-based ML algorithms performed best in the training data set, while regularization methods best performed for unseen data. ML algorithms represent a feasible alternative to accurately predict ADAOO with little human intervention. Future studies may include predicting the speed of cognitive decline in our cohorts using ML.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Benchmarking machine learning models for late-onset alzheimer’s disease prediction from genomic data
    Javier De Velasco Oriol
    Edgar E. Vallejo
    Karol Estrada
    José Gerardo Taméz Peña
    The Alzheimer’s Disease Neuroimaging Initiative
    BMC Bioinformatics, 20
  • [42] Brain Amyloid in Sporadic Young Onset Alzheimer's Disease
    Panegyres, Peter K.
    Robins, Peter
    JOURNAL OF ALZHEIMERS DISEASE REPORTS, 2023, 7 (01) : 263 - 270
  • [43] Alzheimer's Disease Prediction via Optimized Deep Learning Framework
    Babu, G. Stalin
    Rao, S. N. Tirumala
    Rao, R. Rajeswara
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 183 - 190
  • [44] Apolipoprotein is a susceptibility genetic locus that affects the expression of late-onset familial and sporadic Alzheimer's disease
    Roses, AD
    Saunders, AM
    PericakVance, MA
    Einstein, G
    Hulette, C
    Schmechel, DE
    Huang, D
    Strittmatter, WJ
    BIOLOGICAL PSYCHIATRY, 1996, 39 (07) : 217 - 217
  • [45] Factorial and discriminant analyses of neuropsychological variables in familial and sporadic late onset Alzheimer disease
    Velásquez, M
    Arcos-Burgos, M
    Toro, ME
    Castaño, A
    Madrigal, L
    Moreno, S
    Jaramilllo, N
    Lopera, F
    REVISTA DE NEUROLOGIA, 2000, 31 (06) : 501 - 506
  • [46] Age-at-onset linkage analysis in Caribbean Hispanics with familial late-onset Alzheimer’s disease
    Joseph H. Lee
    Sandra Barral
    Rong Cheng
    Inara Chacon
    Vincent Santana
    Jennifer Williamson
    Rafael Lantigua
    Martin Medrano
    Ivonne Z. Jimenez-Velazquez
    Yaakov Stern
    Benjamin Tycko
    Ekaterina Rogaeva
    Yosuke Wakutani
    Toshitaka Kawarai
    Peter St George-Hyslop
    Richard Mayeux
    Neurogenetics, 2008, 9
  • [47] Age-at-onset linkage analysis in Caribbean Hispanics with familial late-onset Alzheimer's disease
    Lee, Joseph H.
    Barral, Sandra
    Cheng, Rong
    Chacon, Inara
    Santana, Vincent
    Williamson, Jennifer
    Lantigua, Rafael
    Medrano, Martin
    Jimenez-Velazquez, Ivonne Z.
    Stern, Yaakov
    Tycko, Benjamin
    Rogaeva, Ekaterina
    Wakutani, Yosuke
    Kawarai, Toshitaka
    St George-Hyslop, Peter
    Mayeux, Richard
    NEUROGENETICS, 2008, 9 (01) : 51 - 60
  • [48] Amyloid Imaging Findings in Familial and Sporadic Patients with Alzheimer's Disease
    Sanlier, M.
    Yilmaz, Y.
    Topcular, B.
    EUROPEAN JOURNAL OF NEUROLOGY, 2020, 27 : 1030 - 1030
  • [49] Cathepsin D polymorphism in Italian sporadic and familial Alzheimer's disease
    Bagnoli, S
    Nacmias, B
    Tedde, A
    Guarnieri, BM
    Cellini, E
    Ciantelli, M
    Petruzzi, C
    Bartoli, A
    Ortenzi, L
    Serio, A
    Sorbi, S
    NEUROSCIENCE LETTERS, 2002, 328 (03) : 273 - 276
  • [50] Auditory adaptation is differentially impaired in familial and sporadic Alzheimer's disease
    Tarkka, IM
    Lehtovirta, M
    Soininen, H
    Pääkkönen, A
    Karhu, J
    Partanen, J
    BIOMEDICINE & PHARMACOTHERAPY, 2002, 56 (01) : 45 - 49