A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer's Disease

被引:4
作者
Velez, Jorge I. [1 ]
Samper, Luiggi A. [2 ]
Arcos-Holzinger, Mauricio [3 ]
Espinosa, Lady G. [4 ]
Isaza-Ruget, Mario A. [4 ]
Lopera, Francisco [5 ]
Arcos-Burgos, Mauricio [3 ]
机构
[1] Univ Norte, Dept Ind Engn, Barranquilla 081007, Colombia
[2] Univ Norte, Dept Publ Hlth, Barranquilla 081007, Colombia
[3] Univ Antioquia, Inst Invest Med, Fac Med, Dept Psiquiatria,Grp Invest Psiquiatria GIPSI, Medellin 050010, Colombia
[4] Fdn Univ Sanitas, INPAC Res Grp, Bogota 111321, Colombia
[5] Univ Antioquia, Neurosci Res Grp, Medellin 050010, Colombia
关键词
age of onset; machine learning; Alzheimer's disease; genetic isolates; PSEN1; predictive genomics; natural history; MILD COGNITIVE IMPAIRMENT; MENTAL-DISORDERS; GENETIC RISK; DEMENTIA; MUTATION; CLASSIFICATION; ARCHITECTURE; PROGRESSION; PREVALENCE; CONVERSION;
D O I
10.3390/diagnostics11050887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer's disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R-2), and the mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-based ML algorithms performed best in the training data set, while regularization methods best performed for unseen data. ML algorithms represent a feasible alternative to accurately predict ADAOO with little human intervention. Future studies may include predicting the speed of cognitive decline in our cohorts using ML.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Machine learning for comprehensive prediction of high risk for Alzheimer's disease based on chromatic pupilloperimetry
    Lustig-Barzelay, Yael
    Sher, Ifat
    Sharvit-Ginon, Inbal
    Feldman, Yael
    Mrejen, Michael
    Dallasheh, Shada
    Livny, Abigail
    Beeri, Michal Schnaider
    Weller, Aron
    Ravona-Springer, Ramit
    Rotenstreich, Ygal
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [42] Onset and progression of disease in familial and sporadic Parkinson's disease
    Inzelberg, R
    Schecthman, E
    Paleacu, D
    Zach, L
    Bonwitt, R
    Carasso, RL
    Nisipeanu, P
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2004, 124A (03) : 255 - 258
  • [43] Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
    Salvatore, Christian
    Cerasa, Antonio
    Battista, Petronilla
    Gilardi, Maria C.
    Quattrone, Aldo
    Castiglioni, Isabella
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [44] Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer's disease
    Condello, Carlo
    Lemmin, Thomas
    Stohr, Jan
    Nick, Mimi
    Wu, Yibing
    Maxwell, Alison M.
    Watts, Joel C.
    Caro, Christoffer D.
    Oehler, Abby
    Keene, C. Dirk
    Bird, Thomas D.
    van Duinen, Sjoerd G.
    Lannfelt, Lars
    Ingelsson, Martin
    Graff, Caroline
    Giles, Kurt
    DeGrado, William F.
    Prusiner, Stanley B.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (04) : E782 - E791
  • [45] TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset Alzheimer’s disease and Down’s Syndrome: association with age, hippocampal sclerosis and clinical phenotype
    Yvonne S. Davidson
    Samantha Raby
    Penelope G. Foulds
    Andrew Robinson
    Jennifer C. Thompson
    Stephen Sikkink
    Imran Yusuf
    Hanan Amin
    Daniel DuPlessis
    Claire Troakes
    Safa Al-Sarraj
    Carolyn Sloan
    Margaret M. Esiri
    Vee P. Prasher
    David Allsop
    David Neary
    Stuart M. Pickering-Brown
    Julie S. Snowden
    David M. A. Mann
    Acta Neuropathologica, 2011, 122 : 703 - 713
  • [46] Deep Learning Techniques for the Effective Prediction of Alzheimer's Disease: A Comprehensive Review
    Shastry, K. Aditya
    Vijayakumar, V.
    Kumar, Manoj M., V
    Manjunatha, B. A.
    Chandrashekhar, B. N.
    HEALTHCARE, 2022, 10 (10)
  • [47] Deep and joint learning of longitudinal data for Alzheimer's disease prediction
    Lei, Baiying
    Yang, Mengya
    Yang, Peng
    Zhou, Feng
    Hou, Wen
    Zou, Wenbin
    Li, Xia
    Wang, Tianfu
    Xiao, Xiaohua
    Wang, Shuqiang
    PATTERN RECOGNITION, 2020, 102 (102)
  • [48] Nicastrin gene in familial and sporadic Alzheimer's disease
    Confaloni, A
    Terreni, L
    Piscopo, P
    Crestini, A
    Campeggia, LM
    Frigerio, CS
    Blotta, I
    Perri, M
    Di Natale, M
    Maletta, R
    Marcon, G
    Franceschi, M
    Bruni, AC
    Forloni, G
    Cantafora, A
    NEUROSCIENCE LETTERS, 2003, 353 (01) : 61 - 65
  • [49] Prediction of Autopsy Verified Neuropathological Change of Alzheimer's Disease Using Machine Learning and MRI
    Kautzky, Alexander
    Seiger, Rene
    Hahn, Andreas
    Fischer, Peter
    Krampla, Wolfgang
    Kasper, Siegfried
    Kovacs, Gabor G.
    Lanzenberger, Rupert
    FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [50] TDP-43 pathological changes in early onset familial and sporadic Alzheimer's disease, late onset Alzheimer's disease and Down's Syndrome: association with age, hippocampal sclerosis and clinical phenotype
    Davidson, Yvonne S.
    Raby, Samantha
    Foulds, Penelope G.
    Robinson, Andrew
    Thompson, Jennifer C.
    Sikkink, Stephen
    Yusuf, Imran
    Amin, Hanan
    DuPlessis, Daniel
    Troakes, Claire
    Al-Sarraj, Safa
    Sloan, Carolyn
    Esiri, Margaret M.
    Prasher, Vee P.
    Allsop, David
    Neary, David
    Pickering-Brown, Stuart M.
    Snowden, Julie S.
    Mann, David M. A.
    ACTA NEUROPATHOLOGICA, 2011, 122 (06) : 703 - 713