A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer's Disease

被引:4
|
作者
Velez, Jorge I. [1 ]
Samper, Luiggi A. [2 ]
Arcos-Holzinger, Mauricio [3 ]
Espinosa, Lady G. [4 ]
Isaza-Ruget, Mario A. [4 ]
Lopera, Francisco [5 ]
Arcos-Burgos, Mauricio [3 ]
机构
[1] Univ Norte, Dept Ind Engn, Barranquilla 081007, Colombia
[2] Univ Norte, Dept Publ Hlth, Barranquilla 081007, Colombia
[3] Univ Antioquia, Inst Invest Med, Fac Med, Dept Psiquiatria,Grp Invest Psiquiatria GIPSI, Medellin 050010, Colombia
[4] Fdn Univ Sanitas, INPAC Res Grp, Bogota 111321, Colombia
[5] Univ Antioquia, Neurosci Res Grp, Medellin 050010, Colombia
关键词
age of onset; machine learning; Alzheimer's disease; genetic isolates; PSEN1; predictive genomics; natural history; MILD COGNITIVE IMPAIRMENT; MENTAL-DISORDERS; GENETIC RISK; DEMENTIA; MUTATION; CLASSIFICATION; ARCHITECTURE; PROGRESSION; PREVALENCE; CONVERSION;
D O I
10.3390/diagnostics11050887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer's disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R-2), and the mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-based ML algorithms performed best in the training data set, while regularization methods best performed for unseen data. ML algorithms represent a feasible alternative to accurately predict ADAOO with little human intervention. Future studies may include predicting the speed of cognitive decline in our cohorts using ML.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Clinical features of sporadic and familial Alzheimer's disease
    Rossor, MN
    Fox, NC
    Freeborough, PA
    Harvey, RJ
    NEURODEGENERATION, 1996, 5 (04): : 393 - 397
  • [22] Molecular Basis of Familial and Sporadic Alzheimer's Disease
    Dorszewska, Jolanta
    Prendecki, Michal
    Oczkowska, Anna
    Dezor, Mateusz
    Kozubski, Wojciech
    CURRENT ALZHEIMER RESEARCH, 2016, 13 (09) : 952 - 963
  • [23] TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset Alzheimer’s disease and Down’s Syndrome: association with age, hippocampal sclerosis and clinical phenotype
    Yvonne S. Davidson
    Samantha Raby
    Penelope G. Foulds
    Andrew Robinson
    Jennifer C. Thompson
    Stephen Sikkink
    Imran Yusuf
    Hanan Amin
    Daniel DuPlessis
    Claire Troakes
    Safa Al-Sarraj
    Carolyn Sloan
    Margaret M. Esiri
    Vee P. Prasher
    David Allsop
    David Neary
    Stuart M. Pickering-Brown
    Julie S. Snowden
    David M. A. Mann
    Acta Neuropathologica, 2011, 122 : 703 - 713
  • [24] Variability of age at onset in siblings with familial Alzheimer disease
    Gomez-Tortosa, Estrella
    Barquero, M. Sagrario
    Baron, Manuel
    Sainz, M. Jose
    Manzano, Sagrario
    Payno, Maria
    Ros, Raquel
    Almaraz, Carmen
    Gomez-Garre, Pilar
    Jimenez-Escrig, Adriano
    ARCHIVES OF NEUROLOGY, 2007, 64 (12) : 1743 - 1748
  • [25] TDP-43 pathological changes in early onset familial and sporadic Alzheimer's disease, late onset Alzheimer's disease and Down's Syndrome: association with age, hippocampal sclerosis and clinical phenotype
    Davidson, Yvonne S.
    Raby, Samantha
    Foulds, Penelope G.
    Robinson, Andrew
    Thompson, Jennifer C.
    Sikkink, Stephen
    Yusuf, Imran
    Amin, Hanan
    DuPlessis, Daniel
    Troakes, Claire
    Al-Sarraj, Safa
    Sloan, Carolyn
    Esiri, Margaret M.
    Prasher, Vee P.
    Allsop, David
    Neary, David
    Pickering-Brown, Stuart M.
    Snowden, Julie S.
    Mann, David M. A.
    ACTA NEUROPATHOLOGICA, 2011, 122 (06) : 703 - 713
  • [26] Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review
    Malik, Isra
    Iqbal, Ahmed
    Gu, Yeong Hyeon
    Al-antari, Mugahed A.
    DIAGNOSTICS, 2024, 14 (12)
  • [27] Familial influence on variation in age of onset and behavioural phenotype in Alzheimer's disease
    Tunstall, N
    Owen, MJ
    Williams, J
    Rice, F
    Carty, S
    Lillystone, S
    Fraser, L
    Kehoe, P
    Neill, D
    Rudrasingham, V
    Sham, P
    Lovestone, S
    BRITISH JOURNAL OF PSYCHIATRY, 2000, 176 : 156 - 159
  • [28] A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer's disease
    Sepulveda-Falla, Diego
    Chavez-Gutierrez, Lucia
    Portelius, Erik
    Velez, Jorge I.
    Dujardin, Simon
    Barrera-Ocampo, Alvaro
    Dinkel, Felix
    Hagel, Christian
    Puig, Berta
    Mastronardi, Claudio
    Lopera, Francisco
    Hyman, Bradley T.
    Blennow, Kaj
    Arcos-Burgos, Mauricio
    de Strooper, Bart
    Glatzel, Markus
    ACTA NEUROPATHOLOGICA, 2021, 141 (02) : 217 - 233
  • [29] A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer’s disease
    Diego Sepulveda-Falla
    Lucia Chavez-Gutierrez
    Erik Portelius
    Jorge I. Vélez
    Simon Dujardin
    Alvaro Barrera-Ocampo
    Felix Dinkel
    Christian Hagel
    Berta Puig
    Claudio Mastronardi
    Francisco Lopera
    Bradley T. Hyman
    Kaj Blennow
    Mauricio Arcos-Burgos
    Bart de Strooper
    Markus Glatzel
    Acta Neuropathologica, 2021, 141 : 217 - 233
  • [30] A Parallel Machine Learning Framework for Detecting Alzheimer's Disease
    Knox, Sean A.
    Chen, Tianhua
    Su, Pan
    Antoniou, Grigoris
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 423 - 432