A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer's Disease

被引:4
|
作者
Velez, Jorge I. [1 ]
Samper, Luiggi A. [2 ]
Arcos-Holzinger, Mauricio [3 ]
Espinosa, Lady G. [4 ]
Isaza-Ruget, Mario A. [4 ]
Lopera, Francisco [5 ]
Arcos-Burgos, Mauricio [3 ]
机构
[1] Univ Norte, Dept Ind Engn, Barranquilla 081007, Colombia
[2] Univ Norte, Dept Publ Hlth, Barranquilla 081007, Colombia
[3] Univ Antioquia, Inst Invest Med, Fac Med, Dept Psiquiatria,Grp Invest Psiquiatria GIPSI, Medellin 050010, Colombia
[4] Fdn Univ Sanitas, INPAC Res Grp, Bogota 111321, Colombia
[5] Univ Antioquia, Neurosci Res Grp, Medellin 050010, Colombia
关键词
age of onset; machine learning; Alzheimer's disease; genetic isolates; PSEN1; predictive genomics; natural history; MILD COGNITIVE IMPAIRMENT; MENTAL-DISORDERS; GENETIC RISK; DEMENTIA; MUTATION; CLASSIFICATION; ARCHITECTURE; PROGRESSION; PREVALENCE; CONVERSION;
D O I
10.3390/diagnostics11050887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer's disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R-2), and the mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-based ML algorithms performed best in the training data set, while regularization methods best performed for unseen data. ML algorithms represent a feasible alternative to accurately predict ADAOO with little human intervention. Future studies may include predicting the speed of cognitive decline in our cohorts using ML.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Midlife Neuroticism and the age of onset of Alzheimer's disease
    Archer, N.
    Brown, R. G.
    Reeves, S.
    Nicholas, H.
    Boothby, H.
    Lovestone, S.
    PSYCHOLOGICAL MEDICINE, 2009, 39 (04) : 665 - 673
  • [22] A Clinically-Translatable Machine Learning Algorithm for the Prediction of Alzheimer's Disease Conversion in Individuals with Mild and Premild Cognitive Impairment
    Grassi, Massimiliano
    Perna, Giampaolo
    Caldirola, Daniela
    Schruers, Koen
    Duara, Ranjan
    Loewenstein, David A.
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 61 (04) : 1555 - 1572
  • [23] The relevance of cerebrospinal fluid -synuclein levels to sporadic and familial Alzheimer's disease
    Twohig, Daniel
    Rodriguez-Vieitez, Elena
    Sando, Sigrid B.
    Berge, Guro
    Lauridsen, Camilla
    Moller, Ina
    Grontvedt, Goril R.
    Brathen, Geir
    Patra, Kalicharan
    Bu, Guojun
    Benzinger, Tammie L. S.
    Karch, Celeste M.
    Fagan, Anne
    Morris, John C.
    Bateman, Randall J.
    Nordberg, Agneta
    White, Linda R.
    Nielsen, Henrietta M.
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2018, 6 : 130
  • [24] Machine learning for the assessment of Alzheimer's disease through DTI
    Lella, Eufemia
    Amoroso, Nicola
    Bellotti, Roberto
    Diacono, Domenico
    La Rocca, Marianna
    Maggipinto, Tommaso
    Monaco, Alfonso
    Tangaro, Sabina
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XL, 2017, 10396
  • [25] Detection of Alzheimer's disease by displacement field and machine learning
    Zhang, Yudong
    Wang, Shuihua
    PEERJ, 2015, 3
  • [26] Alzheimer's Disease Diagnosis Using Machine Learning: A Survey
    Dara, Omer Asghar
    Lopez-Guede, Jose Manuel
    Raheem, Hasan Issa
    Rahebi, Javad
    Zulueta, Ekaitz
    Fernandez-Gamiz, Unai
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [27] Mean age of onset in familial Alzheimer's disease is determined by amyloid beta 42
    Duering, M
    Grimm, MOW
    Grimm, HS
    Schröder, J
    Hartmann, T
    NEUROBIOLOGY OF AGING, 2005, 26 (06) : 785 - 788
  • [28] Comparison of Aβ levels in the brain of familial and sporadic Alzheimer's disease
    Hellstrom-Lindahl, E.
    Viitanen, M.
    Marutle, A.
    NEUROCHEMISTRY INTERNATIONAL, 2009, 55 (04) : 243 - 252
  • [29] Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning
    Franzmeier, Nicolai
    Koutsouleris, Nikolaos
    Benzinger, Tammie
    Goate, Alison
    Karch, Celeste M.
    Fagan, Anne M.
    McDade, Eric
    Duering, Marco
    Dichgans, Martin
    Levin, Johannes
    Gordon, Brian A.
    Lim, Yen Ying
    Masters, Colin L.
    Rossor, Martin
    Fox, Nick C.
    O'Connor, Antoinette
    Chhatwal, Jasmeer
    Salloway, Stephen
    Danek, Adrian
    Hassenstab, Jason
    Schofield, Peter R.
    Morris, John C.
    Bateman, Randall J.
    Ewers, Michael
    ALZHEIMERS & DEMENTIA, 2020, 16 (03) : 501 - 511
  • [30] Prognosis of Alzheimer's Disease Using Quantitative Mass Spectrometry of Human Blood Plasma Proteins and Machine Learning
    Kononikhin, Alexey S.
    Zakharova, Natalia, V
    Semenov, Savva D.
    Bugrova, Anna E.
    Brzhozovskiy, Alexander G.
    Indeykina, Maria I.
    Fedorova, Yana B.
    Kolykhalov, Igor, V
    Strelnikova, Polina A.
    Ikonnikova, Anna Yu
    Gryadunov, Dmitry A.
    Gavrilova, Svetlana, I
    Nikolaev, Evgeny N.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (14)