Power Decoupling Control for Modular Multilevel Converter

被引:40
作者
Wang, Jinyu [1 ]
Wang, Peng [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Coupling effects; high-voltage direct current (HVDC) transmission; modular multilevel converter (MMC); parameters selection; power decoupling; VOLTAGE BALANCING METHOD; CIRCULATING CURRENT; MMC-HVDC; SUPPRESSION; STRATEGY; SYSTEM;
D O I
10.1109/TPEL.2018.2799321
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existing power decoupling control method of modular multilevel converter (MMC) was developed from that of conventional two-level voltage source converters. Therefore, it cannot fully realize power decoupling due to neglecting the coupling effects from submodule capacitor voltage, dc current, circulating current as well as control strategies of circulating current, which inevitably results in inaccurate regulation of active and reactive power, deteriorated system dynamic performance, possible overload operation and eventually threatens the safety and stability of MMC. This paper analyzes the intercoupling among all electrical quantities and corresponding control strategies in MMC. An accurate control model of active and reactive power/current with four coupling paths and influence factors in the rotating frame is also established. A full power decoupling control method has been proposed based on the developed model. The proposed control method can realize accurate and completely decoupled active and reactive power regulation, avoid overload operation, and significantly improve the dynamic performance of MMC. Moreover, it facilitates the parameters selection of MMC controller with no extra cost, which is of great significance for practical projects. The effectiveness and accuracy of the proposed analysis and control methods were verified by both simulation and experimental results.
引用
收藏
页码:9296 / 9309
页数:14
相关论文
共 49 条
[1]  
Adam GP, 2015, INT CONF RENEW ENERG, P1432, DOI 10.1109/ICRERA.2015.7418644
[2]  
[Anonymous], 2012, PROC IEEE 10 IET INT
[3]   Multivariable-PI-Based dq Current Control of Voltage Source Converters With Superior Axis Decoupling Capability [J].
Bahrani, Behrooz ;
Kenzelmann, Stephan ;
Rufer, Alfred .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (07) :3016-3026
[4]   An Energy-Based Controller for HVDC Modular Multilevel Converter in Decoupled Double Synchronous Reference Frame for Voltage Oscillation Reduction [J].
Bergna, Gilbert ;
Berne, Erik ;
Egrot, Philippe ;
Lefranc, Pierre ;
Arzande, Amir ;
Vannier, Jean-Claude ;
Molinas, Marta .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (06) :2360-2371
[5]   Operation, Control, and Applications of the Modular Multilevel Converter: A Review [J].
Debnath, Suman ;
Qin, Jiangchao ;
Bahrani, Behrooz ;
Saeedifard, Maryam ;
Barbosa, Peter .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (01) :37-53
[6]   A New Hybrid Modular Multilevel Converter for Grid Connection of Large Wind Turbines [J].
Debnath, Suman ;
Saeedifard, Maryam .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (04) :1051-1064
[7]   A Control Method for Voltage Balancing in Modular Multilevel Converters [J].
Deng, Fujin ;
Chen, Zhe .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (01) :66-76
[8]   An Improved Control System for Modular Multilevel Converters with New Modulation Strategy and Voltage Balancing Control [J].
Fan, Shengfang ;
Zhang, Kai ;
Xiong, Jian ;
Xue, Yaosuo .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (01) :358-371
[9]   VSC-Based HVDC Power Transmission Systems: An Overview [J].
Flourentzou, Nikolas ;
Agelidis, Vassilios G. ;
Demetriades, Georgios D. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2009, 24 (3-4) :592-602
[10]   A Medium-Voltage Motor Drive With a Modular Multilevel PWM Inverter [J].
Hagiwara, Makoto ;
Nishimura, Kazutoshi ;
Akagi, Hirofumi .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (07) :1786-1799