Complementary Lidstone Interpolation and Boundary Value Problems

被引:16
作者
Agarwal, Ravi P. [1 ,2 ]
Pinelas, Sandra [3 ]
Wong, Patricia J. Y. [4 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Azores Univ, Dept Math, P-9500321 R Mae De Deus, Ponta Delgada, Portugal
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
SYMMETRIC POSITIVE SOLUTIONS; EXISTENCE; DERIVATIVES; POLYNOMIALS; EXPANSIONS; DEPENDENCE;
D O I
10.1155/2009/624631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall introduce and construct explicitly the complementary Lidstone interpolating polynomial P-2m(t) of degree 2m, which involves interpolating data at the odd-order derivatives. For P-2m(t) we will provide explicit representation of the error function, best possible error inequalities, best possible criterion for the convergence of complementary Lidstone series, and a quadrature formula with best possible error bound. Then, these results will be used to establish existence and uniqueness criteria, and the convergence of Picard's, approximate Picard's, quasilinearization, and approximate quasilinearization iterative methods for the complementary Lidstone boundary value problems which consist of a (2m+1)th order differential equation and the complementary Lidstone boundary conditions. Copyright (C) 2009 Ravi P. Agarwal et al.
引用
收藏
页数:30
相关论文
共 48 条
[11]  
Agarwall RP., 1982, J COMPUT APPL MATH, V8, P145, DOI DOI 10.1016/0771-050X(82)90035-3
[12]  
Avery R.I., 2000, Electron. J. Differential Equations, V2000, P1
[13]   Solutions of 2nth Lidstone boundary value problems and dependence on higher order derivatives [J].
Bai, ZB ;
Ge, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :442-450
[14]  
Baldwin P., 1987, Applicable Analysis, V24, P117, DOI 10.1080/00036818708839658
[15]   ASYMPTOTIC ESTIMATES OF THE EIGENVALUES OF A 6TH-ORDER BOUNDARY-VALUE PROBLEM OBTAINED BY USING GLOBAL PHASE-INTEGRAL METHODS [J].
BALDWIN, P .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 322 (1566) :281-305
[16]  
Boas RP., 1943, DUKE MATH J, V10, P239, DOI [10.1215/S0012-7094-43-01021-X, DOI 10.1215/S0012-7094-43-01021-X]
[17]   FINITE-DIFFERENCE METHODS FOR 12TH-ORDER BOUNDARY-VALUE-PROBLEMS [J].
BOUTAYEB, A ;
TWIZELL, EH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 35 (1-3) :133-138
[18]   Positive solutions of 2mth-order boundary value problems [J].
Chyan, CJ ;
Henderson, J .
APPLIED MATHEMATICS LETTERS, 2002, 15 (06) :767-774
[19]   Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values [J].
Costabile, FA ;
Dell'Accio, F ;
Luceri, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) :77-90
[20]   General Lidstone problems: Multiplicity and symmetry of solutions [J].
Davis, JM ;
Henderson, J ;
Wong, PJY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :527-548