Complementary Lidstone Interpolation and Boundary Value Problems

被引:16
作者
Agarwal, Ravi P. [1 ,2 ]
Pinelas, Sandra [3 ]
Wong, Patricia J. Y. [4 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Azores Univ, Dept Math, P-9500321 R Mae De Deus, Ponta Delgada, Portugal
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
SYMMETRIC POSITIVE SOLUTIONS; EXISTENCE; DERIVATIVES; POLYNOMIALS; EXPANSIONS; DEPENDENCE;
D O I
10.1155/2009/624631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall introduce and construct explicitly the complementary Lidstone interpolating polynomial P-2m(t) of degree 2m, which involves interpolating data at the odd-order derivatives. For P-2m(t) we will provide explicit representation of the error function, best possible error inequalities, best possible criterion for the convergence of complementary Lidstone series, and a quadrature formula with best possible error bound. Then, these results will be used to establish existence and uniqueness criteria, and the convergence of Picard's, approximate Picard's, quasilinearization, and approximate quasilinearization iterative methods for the complementary Lidstone boundary value problems which consist of a (2m+1)th order differential equation and the complementary Lidstone boundary conditions. Copyright (C) 2009 Ravi P. Agarwal et al.
引用
收藏
页数:30
相关论文
共 48 条
[1]  
AGARWAL R. P., 1993, Error Inequalities in Polynomial Interpolation and Their Applications
[2]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[3]  
Agarwal R.P., 1998, MATH APPL, V436, DOI 10.1007/978-94-017-1568-3
[4]  
Agarwal R.P., 1986, BOUND VALUE PROBL
[5]   QUASI-LINEARIZATION AND APPROXIMATE QUASI-LINEARIZATION FOR LIDSTONE BOUNDARY-VALUE-PROBLEMS [J].
AGARWAL, RP ;
WONG, PJY .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 42 (1-2) :99-116
[6]   LIDSTONE POLYNOMIALS AND BOUNDARY-VALUE PROBLEMS [J].
AGARWAL, RP ;
WONG, PJY .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 17 (10) :1397-1421
[7]  
AGARWAL RP, 1992, INT S NUM M, V103, P73
[8]   Singular Lidstone boundary value problem with given maximal values for solutions [J].
Agarwal, RP ;
O'Regan, D ;
Stanek, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (7-8) :859-881
[9]  
AGARWAL RP, 2000, DIFF EQUAT, V19, P107
[10]  
AGARWAL RP, 1998, MG TXB PUR APPL MATH, V212, P1