MEAN CURVATURE FLOW WITH SURGERY

被引:38
作者
Haslhofer, Robert [1 ]
Kleiner, Bruce [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] NYU, Courant Inst Math Sci, New York, NY USA
基金
美国国家科学基金会;
关键词
CONVEX SURFACES; 2-CONVEX HYPERSURFACES; GENERIC SINGULARITIES; UNIQUENESS; SETS;
D O I
10.1215/00127094-0000008X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof for the existence of mean curvature flow with surgery of 2-convex hypersurfaces in R-N. Our proof works for all N >= 3, including mean convex surfaces in R-3. We also derive a priori estimates for a more general class of flows in a local and flexible setting.
引用
收藏
页码:1591 / 1626
页数:36
相关论文
共 36 条
[1]   TRANSLATING SURFACES OF THE NONPARAMETRIC MEAN-CURVATURE FLOW WITH PRESCRIBED CONTACT-ANGLE [J].
ALTSCHULER, SJ ;
WU, LF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :101-111
[2]   Non-collapsing in fully non-linear curvature flows [J].
Andrews, Ben ;
Langford, Mat ;
McCoy, James .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01) :23-32
[3]   Noncollapsing in mean-convex mean curvature flow [J].
Andrews, Ben .
GEOMETRY & TOPOLOGY, 2012, 16 (03) :1413-1418
[4]  
Bessières L, 2010, EMS TRACTS MATH, V13, P1, DOI 10.4171/082
[5]  
Brakke K. A, 1978, Mathematical Notes, V20
[6]  
Brendle S, 2016, INVENT MATH, V203, P615, DOI 10.1007/s00222-015-0599-3
[7]   A sharp bound for the inscribed radius under mean curvature flow [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2015, 202 (01) :217-237
[8]  
BUZANO R., 1599, ARXIV160705604V1MATH
[9]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[10]  
Chen BL, 2007, COMMUN ANAL GEOM, V15, P435