Elementary differences between the (2p)-c. e. and the (2p+1)-c. e. enumeration degrees

被引:1
作者
Kalimullin, I. S. [1 ]
机构
[1] Kazan VI Lenin State Univ, NG Chebotarev Res Inst Mech & Math, Kazan 420008, Russia
关键词
D O I
10.2178/jsl/1174668395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the (2p)-c. e. e-degrees are not elementarily equivalent to the (2p + I)-c. e. e-degrees for each nonzero P is an element of omega It follows that m-c. e. e-degrees are not elementarily equivalent to the n-c. e. e-degrees if I < m < n.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 6 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Kalimullin I. S., 2003, J MATH LOG, V3, P257
[3]  
Kalimullin I. S., 2001, RUSSIAN MATH, V45, P22
[4]  
LACHLAN AH, 1966, P LOND MATH SOC, V16, P537
[5]  
Rogers H., 1987, THEORY RECURSIVE FUN
[6]  
SOARE RI, 1987, OMEGA SERIES