Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

被引:416
作者
Cichy, Radoslaw Martin [1 ,2 ]
Khosla, Aditya [1 ]
Pantazis, Dimitrios [3 ]
Torralba, Antonio [1 ]
Oliva, Aude [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Free Univ Berlin, Dept Educ & Psychol, Berlin, Germany
[3] MIT, McGovern Inst Brain Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SPACE; SHAPE; INFORMATION; REPRESENTATIONS; INTERFERENCE; ORGANIZATION; SELECTIVITY; MODELS;
D O I
10.1038/srep27755
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
引用
收藏
页数:13
相关论文
共 54 条
[1]   The reverse hierarchy theory of visual perceptual learning [J].
Ahissar, M ;
Hochstein, S .
TRENDS IN COGNITIVE SCIENCES, 2004, 8 (10) :457-464
[2]  
[Anonymous], 2014, ARXIV14090575CS
[3]  
[Anonymous], 2015, ARXIV150201852CS
[4]  
[Anonymous], ARXIV14075104CSQBIO
[5]  
[Anonymous], BIORXIV
[6]  
[Anonymous], ADV NEURAL INF PROCE
[7]  
[Anonymous], NIPS WORKSH DEEP LEA
[8]  
[Anonymous], 2015, INT C LEARN REPR ICL
[9]   The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology [J].
Benson, Noah C. ;
Butt, Omar H. ;
Datta, Ritobrato ;
Radoeva, Petya D. ;
Brainard, David H. ;
Aguirre, Geoffrey K. .
CURRENT BIOLOGY, 2012, 22 (21) :2081-2085
[10]   Integrated model of visual processing [J].
Bullier, J .
BRAIN RESEARCH REVIEWS, 2001, 36 (2-3) :96-107