A Kiefer-Wolfowitz comparison theorem for wicksell's problem

被引:5
|
作者
Wang, Xiao [1 ]
Woodroofe, Michael
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 04期
关键词
dark matter; empirical processes; isotonic estimation; least concave majorant; regression function; velocity dispersions;
D O I
10.1214/009053606000001604
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the isotonic analysis for Wicksell's problem to estimate a regression function, which is motivated by the problem of estimating dark matter distribution in astronomy. The main result is a version of the Kiefer-Wolfowitz theorem comparing the empirical distribution to its least concave majorant, but with a convergence rate n(-1) log n faster than n(-2/3) log n. The main result is useful in obtaining asymptotic distributions for estimators, such as isotonic and smooth estimators.
引用
收藏
页码:1559 / 1575
页数:17
相关论文
共 50 条
  • [41] Maximum Size Prediction in Wicksell's Corpuscle Problem for the Exponential Tail Data
    Rinya Takahashi
    Masaaki Sibuya
    Extremes, 2002, 5 (1) : 55 - 70
  • [42] COMPARISON THEOREM FOR AN ELLIPTIC PROBLEM WITH SINGULAR NONLINEARITY
    BANDLE, C
    MARCUS, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (13): : 861 - 863
  • [43] On Leighton's comparison theorem
    Ghatasheh, Ahmed
    Weikard, Rudi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (12) : 5978 - 5989
  • [44] Inverse problem and Bertrand's theorem
    Grandati, Yves
    Berard, Alain
    Menas, Ferhat
    AMERICAN JOURNAL OF PHYSICS, 2008, 76 (08) : 782 - 787
  • [45] EULER'S THEOREM AND THE PROBLEM OF DISTRIBUTION
    Robinson, Joan
    ECONOMIC JOURNAL, 1934, 44 (175): : 398 - 414
  • [46] On Waring's problem: Beyond Freiman's theorem
    Bruedern, Joerg
    Wooley, Trevor D.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [47] On Montel's theorem and Yang's problem - Note
    Xu, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) : 743 - 751
  • [48] Plateau's Problem and Riemann's Mapping Theorem
    Hildebrandt, Stefan
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) : 67 - 79
  • [49] Plateau’s Problem and Riemann’s Mapping Theorem
    Stefan Hildebrandt
    Milan Journal of Mathematics, 2011, 79 : 67 - 79
  • [50] Remark on Casselman's comparison theorem
    Hecht, H
    Taylor, JL
    GEOMETRY AND REPRESENTATION THEORY OF REAL AND P-ADIC GROUPS, 1998, 158 : 139 - 146