Entropy solutions for a doubly nonlinear elliptic problem with variable exponent

被引:16
作者
Bonzi, Bernard K. [1 ]
Ouaro, Stanislas [1 ]
机构
[1] Univ Ouagadougou, Lab Anal Math Equat LAME, UFR, Ouagadougou, Burkina Faso
关键词
Generalized Lebesgue-Sobolev spaces; Weak energy solution; Entropy solution; p(x)-Laplace operator; Electrorheological fluids; Thermorheological fluids; SOBOLEV EMBEDDINGS; ELECTRORHEOLOGICAL FLUIDS; NONSTANDARD GROWTH; FUNCTIONALS; EXISTENCE; EQUATIONS;
D O I
10.1016/j.jmaa.2010.05.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundary value problem b(u) - diva(x, del u) = f in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N (N >= 3) and div a(x, del u) is a p(x)-Laplace type operator with p(.) : Omega -> [1, +infinity) a measurable function and b a continuous and nondecreasing function from R -> R. We prove the existence and uniqueness of an entropy solution for L-1-data f. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:392 / 405
页数:14
相关论文
共 29 条