Use of the DBM Model to the Predict of Arrival of Coronal Mass Ejections to the Earth

被引:6
作者
Kaportseva, K. B. [1 ,2 ]
Shugay, Yu. S. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Sci Res Inst Nucl Phys, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
SOLAR-WIND; TIME; CMES;
D O I
10.1134/S001095252104002X
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper analyzes the results of modeling coronal mass ejection (CME) propagation in 2010-2011 obtained using input data from different sources: CME catalogs SEEDS and CACTus, and predictions of the velocity of quasi-stationary solar wind fluxes, as an environment, through which CMEs propagate. As the model of quasi-stationary solar wind fluxes, the model for predicting the velocity of the solar wind of the Space Weather Forecast Center of the Skobeltsyn Institute of Nuclear Physics of Moscow State University, operating online, is used. The CME prediction is carried out using the Simple Drag-Based Model. A comparison was performed between the ICME arrival time and their velocities obtained when modeling with data from the open ICME catalogs: the Richardson and Cane ICME catalog and the GMU CME List. Based on the comparison, it was concluded that a more accurate prediction for the growth phase of the 24th solar activity cycle was obtained using data on CME parameters from the CACTus database. The obtained errors in predicting the ICME parameters are comparable with the errors of other existing models.
引用
收藏
页码:268 / 279
页数:12
相关论文
共 50 条
[41]   DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL [J].
Jin, M. ;
Manchester, W. B. ;
van der Holst, B. ;
Sokolov, I. ;
Toth, G. ;
Mullinix, R. E. ;
Taktakishvili, A. ;
Chulaki, A. ;
Gombosi, T. I. .
ASTROPHYSICAL JOURNAL, 2017, 834 (02)
[42]   NEAR-EARTH COSMIC RAY DECREASES ASSOCIATED WITH REMOTE CORONAL MASS EJECTIONS [J].
Thomas, S. R. ;
Owens, M. J. ;
Lockwood, M. ;
Barnard, L. ;
Scott, C. J. .
ASTROPHYSICAL JOURNAL, 2015, 801 (01)
[43]   CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU [J].
Moestl, C. ;
Amla, K. ;
Hall, J. R. ;
Liewer, P. C. ;
De Jong, E. M. ;
Colaninno, R. C. ;
Veronig, A. M. ;
Rollett, T. ;
Temmer, M. ;
Peinhart, V. ;
Davies, J. A. ;
Lugaz, N. ;
Liu, Y. D. ;
Farrugia, C. J. ;
Luhmann, J. G. ;
Vrsnak, B. ;
Harrison, R. A. ;
Galvin, A. B. .
ASTROPHYSICAL JOURNAL, 2014, 787 (02)
[44]   FRiED: A NOVEL THREE-DIMENSIONAL MODEL OF CORONAL MASS EJECTIONS [J].
Isavnin, A. .
ASTROPHYSICAL JOURNAL, 2016, 833 (02)
[45]   Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model [J].
Vrsnak, B. ;
Zic, T. ;
Vrbanec, D. ;
Temmer, M. ;
Rollett, T. ;
Moestl, C. ;
Veronig, A. ;
Calogovic, J. ;
Dumbovic, M. ;
Lulic, S. ;
Moon, Y-J ;
Shanmugaraju, A. .
SOLAR PHYSICS, 2013, 285 (1-2) :295-315
[46]   Sun-to-Earth Observations and Characteristics of Isolated Earth-Impacting Interplanetary Coronal Mass Ejections During 2008-2014 [J].
Maricic, D. ;
Vrsnak, B. ;
Veronig, A. M. ;
Dumbovic, M. ;
Sterc, F. ;
Rosa, D. ;
Karlica, M. ;
Hrzina, D. ;
Romstajn, I. .
SOLAR PHYSICS, 2020, 295 (07)
[47]   Magnetic cloud prediction model for forecasting space weather relevant properties of Earth-directed coronal mass ejections [J].
Pal, Sanchita ;
Nandy, Dibyendu ;
Kilpua, Emilia K. J. .
ASTRONOMY & ASTROPHYSICS, 2022, 665
[48]   Assessing the Nature of Collisions of Coronal Mass Ejections in the Inner Heliosphere [J].
Mishra, Wageesh ;
Wang, Yuming ;
Srivastava, Nandita ;
Shen, Chenglong .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2017, 232 (01)
[49]   A Data-constrained Model for Coronal Mass Ejections Using the Graduated Cylindrical Shell Method [J].
Singh, T. ;
Yalim, M. S. ;
Pogorelov, N. V. .
ASTROPHYSICAL JOURNAL, 2018, 864 (01)
[50]   Prospective of coronal mass ejections, solar flares and geomagnetic storms [J].
Singh, A. K. ;
Tonk, A. ;
Singh, R. .
INDIAN JOURNAL OF PHYSICS, 2014, 88 (11) :1127-1133