Use of the DBM Model to the Predict of Arrival of Coronal Mass Ejections to the Earth

被引:6
作者
Kaportseva, K. B. [1 ,2 ]
Shugay, Yu. S. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Sci Res Inst Nucl Phys, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
SOLAR-WIND; TIME; CMES;
D O I
10.1134/S001095252104002X
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper analyzes the results of modeling coronal mass ejection (CME) propagation in 2010-2011 obtained using input data from different sources: CME catalogs SEEDS and CACTus, and predictions of the velocity of quasi-stationary solar wind fluxes, as an environment, through which CMEs propagate. As the model of quasi-stationary solar wind fluxes, the model for predicting the velocity of the solar wind of the Space Weather Forecast Center of the Skobeltsyn Institute of Nuclear Physics of Moscow State University, operating online, is used. The CME prediction is carried out using the Simple Drag-Based Model. A comparison was performed between the ICME arrival time and their velocities obtained when modeling with data from the open ICME catalogs: the Richardson and Cane ICME catalog and the GMU CME List. Based on the comparison, it was concluded that a more accurate prediction for the growth phase of the 24th solar activity cycle was obtained using data on CME parameters from the CACTus database. The obtained errors in predicting the ICME parameters are comparable with the errors of other existing models.
引用
收藏
页码:268 / 279
页数:12
相关论文
共 50 条
  • [21] Coronal Mass Ejections: Observations
    David F. Webb
    Timothy A. Howard
    Living Reviews in Solar Physics, 2012, 9
  • [22] COMPOSITION OF CORONAL MASS EJECTIONS
    Zurbuchen, T. H.
    Weberg, M.
    von Steiger, R.
    Mewaldt, R. A.
    Lepri, S. T.
    Antiochos, S. K.
    ASTROPHYSICAL JOURNAL, 2016, 826 (01)
  • [23] Dynamics of coronal mass ejections in the interplanetary medium
    Borgazzi, A.
    Lara, A.
    Echer, E.
    Alves, M. V.
    ASTRONOMY & ASTROPHYSICS, 2009, 498 (03) : 885 - 889
  • [24] HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: DRAG-BASED MODEL FITTING
    Zic, T.
    Vrsnak, B.
    Temmer, M.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 218 (02)
  • [25] Estimation of Arrival Time of Coronal Mass Ejections in the Vicinity of the Earth Using SOlar and Heliospheric Observatory and Solar TErrestrial RElations Observatory Observations
    Ravishankar, Anitha
    Michalek, Grzegorz
    SOLAR PHYSICS, 2019, 294 (09)
  • [26] ESTIMATING THE ARRIVAL TIME OF EARTH-DIRECTED CORONAL MASS EJECTIONS AT IN SITU SPACECRAFT USING COR AND HI OBSERVATIONS FROM STEREO
    Mishra, Wageesh
    Srivastava, Nandita
    ASTROPHYSICAL JOURNAL, 2013, 772 (01)
  • [27] Empirical model of the transit time of interplanetary coronal mass ejections
    Mahrous, A.
    El-Nawawy, M.
    Hammam, M.
    Ahmed, N.
    SOLAR SYSTEM RESEARCH, 2009, 43 (02) : 128 - 135
  • [28] Comparison of Cone Model Parameters for Halo Coronal Mass Ejections
    Na, Hyeonock
    Moon, Y. -J.
    Jang, Soojeong
    Lee, Kyoung-Sun
    Kim, Hae-Yeon
    SOLAR PHYSICS, 2013, 288 (01) : 313 - 329
  • [29] Distributions of Energy and Mass of Coronal Mass Ejections
    Gao, P. X.
    Li, K. J.
    Xu, J. C.
    SOLAR PHYSICS, 2011, 273 (01) : 117 - 123
  • [30] Outer radiation belt dropout dynamics following the arrival of two interplanetary coronal mass ejections
    Alves, L. R.
    Da Silva, L. A.
    Souza, V. M.
    Sibeck, D. G.
    Jauer, P. R.
    Vieira, L. E. A.
    Walsh, B. M.
    Silveira, M. V. D.
    Marchezi, J. P.
    Rockenbach, M.
    Dal Lago, A.
    Mendes, O.
    Tsurutani, B. T.
    Koga, D.
    Kanekal, S. G.
    Baker, D. N.
    Wygant, J. R.
    Kletzing, C. A.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (03) : 978 - 987