Stochastic quantization of scalar fields in Einstein and Rindler spacetime

被引:5
|
作者
Menezes, G. [1 ]
Svaiter, N. F. [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
关键词
D O I
10.1088/1751-8113/40/29/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the stochastic quantization method for scalar fields defined in a curved manifold and also in a flat spacetime with event horizon. The two-point function associated with a massive self-interacting scalar field is evaluated, up to the first-order level in the coupling constant., for the case of an Einstein and also a Rindler Euclidean metric, respectively. Its value for the asymptotic limit of the Markov parameter tau --> infinity is exhibited. The divergences therein are taken care of by employing a covariant stochastic regularization, where all the symmetries of the original theory are preserved.
引用
收藏
页码:8545 / 8568
页数:24
相关论文
共 50 条
  • [21] Rindler horizons in a Schwarzschild spacetime
    Paithankar, Kajol
    Kolekar, Sanved
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [22] NONLOCAL STOCHASTIC QUANTIZATION OF SCALAR ELECTRODYNAMICS
    DINEYKHAN, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (03) : 311 - 337
  • [23] THE BOGOLUBOV GROUP AND QUANTIZATION OF SCALAR FIELDS
    BOMBELLI, L
    WYROZUMSKI, T
    CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (06) : 919 - 932
  • [24] Inappropriateness of the Rindler quantization
    Nikolic, H
    MODERN PHYSICS LETTERS A, 2001, 16 (09) : 579 - 581
  • [25] Propagation of Scalar Fields in a Plane Symmetric Spacetime
    Celestino, Juliana
    Alves, Marcio E. S.
    Barone, F. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (06) : 784 - 792
  • [26] Volume elements of spacetime and a quartet of scalar fields
    Gronwald, F
    Muench, U
    Macias, A
    Hehl, FW
    PHYSICAL REVIEW D, 1998, 58 (08)
  • [27] Propagation of Scalar Fields in a Plane Symmetric Spacetime
    Juliana Celestino
    Márcio E. S. Alves
    F. A. Barone
    Brazilian Journal of Physics, 2016, 46 : 784 - 792
  • [28] Quantum interest for scalar fields in Minkowski spacetime
    Pretorius, F
    PHYSICAL REVIEW D, 2000, 61 (06):
  • [29] Hydrodynamics and viscosity in the Rindler spacetime
    Eling, Christopher
    Chirco, Goffredo
    Liberati, Stefano
    TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011, 2012, 1458 : 69 - 83
  • [30] Quantum Communication in Rindler Spacetime
    Bradler, Kamil
    Hayden, Patrick
    Panangaden, Prakash
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (02) : 361 - 398