Stochastic quantization of scalar fields in Einstein and Rindler spacetime

被引:5
|
作者
Menezes, G. [1 ]
Svaiter, N. F. [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
关键词
D O I
10.1088/1751-8113/40/29/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the stochastic quantization method for scalar fields defined in a curved manifold and also in a flat spacetime with event horizon. The two-point function associated with a massive self-interacting scalar field is evaluated, up to the first-order level in the coupling constant., for the case of an Einstein and also a Rindler Euclidean metric, respectively. Its value for the asymptotic limit of the Markov parameter tau --> infinity is exhibited. The divergences therein are taken care of by employing a covariant stochastic regularization, where all the symmetries of the original theory are preserved.
引用
收藏
页码:8545 / 8568
页数:24
相关论文
共 50 条
  • [1] Stochastic quantization of scalar fields in de Sitter spacetime
    de Aguiar, T. C.
    Menezes, G.
    Svaiter, N. F.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (07)
  • [2] REMARKS ON A STOCHASTIC QUANTIZATION OF SCALAR FIELDS
    KLAUDER, JR
    EZAWA, H
    PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (02): : 664 - 673
  • [3] Stochastic parameters for scalar fields in de Sitter spacetime
    Cable, Archie
    Rajantie, Arttu
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [4] Normal mode quantization of relativistic scalar fields in an Einstein elevator
    Komar, A
    ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS, 2002, 60 : 243 - 250
  • [5] BOSE-EINSTEIN CONDENSATION FOR INTERACTING SCALAR FIELDS IN CURVED SPACETIME
    KIRSTEN, K
    TOMS, DJ
    PHYSICAL REVIEW D, 1995, 51 (12): : 6886 - 6900
  • [6] Edge state quantization: vector fields in Rindler
    Blommaert, Andreas
    Mertens, Thomas G.
    Verschelde, Henri
    Zakharov, Valentin, I
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [7] Edge state quantization: vector fields in Rindler
    Andreas Blommaert
    Thomas G. Mertens
    Henri Verschelde
    Valentin I. Zakharov
    Journal of High Energy Physics, 2018
  • [8] QUANTIZATION OF A SCALAR FIELD IN KERR SPACETIME
    FORD, LH
    PHYSICAL REVIEW D, 1975, 12 (10) : 2963 - 2977
  • [9] PERTURBATION-THEORY FROM STOCHASTIC QUANTIZATION OF SCALAR FIELDS
    GRIMUS, W
    HUFFEL, H
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1983, 18 (02): : 129 - 134
  • [10] STOCHASTIC QUANTIZATION OF EINSTEIN GRAVITY
    RUMPF, H
    PHYSICAL REVIEW D, 1986, 33 (04): : 942 - 952