Weyl quantization for semidirect products

被引:17
作者
Cahen, Benjamin [1 ]
机构
[1] Univ Metz, Dept Math, F-57045 Metz 01, France
关键词
semidirect products; unitary representations; coadjoint orbits; Weyl quantization;
D O I
10.1016/j.difgeo.2006.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be the semidirect product V x K where K is a connected semisimple non-compact Lie group acting linearity on a finite-dimensional real vector space V. Let 0 be a coadjoint orbit of G associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation pi of G. We consider the case when the corresponding little group K-0 is a maximal compact subgroup of K. We realize the representation pi on a Hilbert space of functions on R '' where n = dim(K) - dim(K-0). By dequantizing pi we then construct a symplectomorphism between the orbit 0 and the product R-2n x O' where O' is a little group coadjoint orbit. This allows us to obtain a Weyl correspondence on 0 which is adapted to the representation pi in the sense of [B. Cahen, Quantification d'une orbite massive d'un groupe de Poincare gendralise, C. R. Acad. Sci. Paris Serie 1 325 (1997) 803-806]. In particular we recover well-known results for the Poincare group. (c) 2006 Elsevier B. V. All rights reserved.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 29 条
[1]  
[Anonymous], 1985, ANAL LINEAR PARTIAL
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]   NILPOTENT FOURIER-TRANSFORM AND APPLICATIONS [J].
ARNAL, D ;
CORTET, JC .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 9 (01) :25-34
[4]  
ARNAL D, 1981, FIELD THEORY QUANTIZ, P85
[5]  
ARNAL D, 1988, ACAD R BELG B, V64, P123
[6]   Semidirect products and the Pukanszky condition [J].
Baguis, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 25 (3-4) :245-270
[7]   Deformation program for principal series representations [J].
Cahen, B .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (01) :65-75
[8]   Quantification of a massive orbit of a generalized Poincare group [J].
Cahen, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :803-806
[9]  
Cahen B, 2001, J LIE THEORY, V11, P257
[10]  
CAHEN B, 1992, THESIS U METZ