Convergence to steady states of solutions of semilinear evolutionary integral equations

被引:20
作者
Chill, R [1 ]
Fasangová, E
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
[2] Charles Univ Prague, Dept Math Anal, Prague 18675 8, Czech Republic
关键词
D O I
10.1007/s00526-004-0278-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence and decay rate to a steady state of bounded solutions of the nonlinear evolutionary integral equation u + B-0(u) over dot + a * (B-1(u) over dot) + M( u) = 0, and we apply our abstract results to the viscoelastic Euler-Bernoulli beam and to Kelvin-Voigt solids.
引用
收藏
页码:321 / 342
页数:22
相关论文
共 18 条
[1]  
AIZICOVICI S, 2004, IN PRESS INTEGRAL EQ
[2]  
Aizicovici S., 2001, J EVOL EQU, V1, P69, DOI DOI 10.1007/PL00001365
[3]  
[Anonymous], 1990, SYSTEMES DYNAMIQUES
[4]  
Arendt W., 2001, MONOGRAPHS MATH, V96
[5]   On the Lojasiewicz-Simon gradient inequality [J].
Chill, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :572-601
[6]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[7]  
Fasangová E, 1999, PROG NONLIN, V35, P213
[8]   Asymptotic behaviour of a semilinear viscoelastic beam model [J].
Fasangová, E ;
Prüss, J .
ARCHIV DER MATHEMATIK, 2001, 77 (06) :488-497
[9]   Rate of decay to equilibrium in some semilinear parabolic equations [J].
Haraux, A ;
Jendoubi, MA ;
Kavian, O .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (03) :463-484
[10]   Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity [J].
Haraux, A ;
Jendoubi, MA .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (02) :95-124