Decomposition of Trace Li2CO3 During Charging Leads to Cathode Interface Degradation with the Solid Electrolyte LLZO

被引:54
作者
Delluva, Alexander A. [1 ,2 ]
Kulberg-Savercool, Jonas [1 ]
Holewinski, Adam [1 ,2 ,3 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[3] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
electrochemical mass spectrometry; lithium carbonate; lithium ion batteries; solid electrolytes; solid interface; solid state batteries; SURFACE-CHEMISTRY; LITHIUM; EVOLUTION; RESISTANCE; STABILITY; BATTERIES; DIFFUSION;
D O I
10.1002/adfm.202103716
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A major challenge for lithium-containing electrochemical systems is the formation of lithium carbonates. Solid-state electrolytes circumvent the use of organic liquids that can generate these species, but they are still susceptible to Li2CO3 formation from exposure to water vapor and carbon dioxide. It is reported here that trace quantities of Li2CO3, which are re-formed following standard mitigation and handling procedures, can decompose at high charging potentials and degrade the electrolyte-cathode interface. Operando electrochemical mass spectrometry (EC-MS) is employed to monitor the outgassing of solid-state batteries containing the garnet electrolyte Li7La3Zr2O12 (LLZO) and using appropriate controls CO2 and O-2 are identified to emanate from the electrolyte-cathode interface at charging potentials > 3.8 V (vs Li/Li+). The gas evolution is correlated with a large increase in cathode interfacial resistance observed by potential-resolved impedance spectroscopy. This is the first evidence of electrochemical decomposition of interfacial Li2CO3 in garnet cells and suggests a need to report "time-to-assembly" for cell preparation methods.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Gas Evolution in All-Solid-State Battery Cells [J].
Bartsch, Timo ;
Strauss, Florian ;
Hatsukade, Toni ;
Schiele, Alexander ;
Kim, A-Young ;
Hartmann, Pascal ;
Janek, Juergen ;
Brezesinski, Torsten .
ACS ENERGY LETTERS, 2018, 3 (10) :2539-2543
[2]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[3]   Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3•(1-x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries [J].
Castel, Elias ;
Berg, Erik J. ;
El Kazzi, Mario ;
Novak, Petr ;
Villevieille, Claire .
CHEMISTRY OF MATERIALS, 2014, 26 (17) :5051-5057
[4]   Cathode Interface Compatibility of Amorphous LiMn2O4 (LMO) and Li7La3Zr2OL12 (LLZO) Characterized with Thin-Film Solid-State Electrochemical Cells [J].
Delluva, Alexander A. ;
Dudoff, Jessica ;
Teeter, Glenn ;
Holewinski, Adam .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) :24992-24999
[5]  
Han F, 2018, JOULE, V2, P16, DOI [10.1016/j.joule.2017.12.014, 10.1016/j.joule.2018.02.007]
[6]   Highly efficient Eu3+-activated K2Gd(WO4)(PO4) red-emitting phosphors with superior thermal stability for solid-state lighting [J].
Huang, Xiaoyong ;
Li, Bin ;
Guo, Heng .
CERAMICS INTERNATIONAL, 2017, 43 (13) :10566-10571
[7]   Li2CO3: A Critical Issue for Developing Solid Garnet Batteries [J].
Huo, Hanyu ;
Luo, Jing ;
Thangadurai, Venkataraman ;
Guo, Xiangxin ;
Nan, Ce-Wen ;
Sun, Xueliang .
ACS ENERGY LETTERS, 2020, 5 (01) :252-262
[8]   All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries [J].
Kim, Kun Joong ;
Rupp, Jennifer L. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) :4930-4945
[9]   Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr3O12 [J].
Krauskopf, Thorben ;
Hartmann, Hannah ;
Zeier, Wolfgang G. ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (15) :14463-14477
[10]   Lithium diffusion coefficient in LiMn2O4 thin films measured by secondary ion mass spectrometry with ion-exchange method [J].
Kuwata, Naoaki ;
Nakane, Masakatsu ;
Miyazaki, Takamichi ;
Mitsuishi, Kazutaka ;
Kawamura, Junichi .
SOLID STATE IONICS, 2018, 320 :266-271