Detection of areas prone to flood risk using state-of-the-art machine learning models

被引:39
|
作者
Costache, Romulus [1 ]
Arabameri, Alireza [2 ]
Elkhrachy, Ismail [3 ,4 ]
Ghorbanzadeh, Omid [5 ]
Quoc Bao Pham [6 ,7 ]
机构
[1] Transilvania Univ Brasov, Dept Civil Engn, Brasov, Romania
[2] Tarbiat Modares Univ, Dept Geomorphol, Tehran, Iran
[3] Najran Univ, Coll Engn, Civil Engn Dept, Najran, Saudi Arabia
[4] Al Azhar Univ, Fac Engn, Civil Engn Dept, Cairo, Egypt
[5] Univ Salzburg, Dept Geoinformat Z GIS, Salzburg, Austria
[6] Ton Duc Thang Univ, Environm Qual Atmospher Sci & Climate Change Res, Ho Chi Minh City, Vietnam
[7] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam
基金
奥地利科学基金会;
关键词
Buzau catchment; flood susceptibility; machine learning; Romania; GIS; ARTIFICIAL NEURAL-NETWORKS; MULTICRITERIA DECISION-MAKING; KERNEL LOGISTIC-REGRESSION; NAIVE BAYES TREE; BIVARIATE STATISTICS; RIVER CATCHMENT; SUSCEPTIBILITY ASSESSMENT; SPATIAL PREDICTION; POTENTIAL INDEX; CLIMATE-CHANGE;
D O I
10.1080/19475705.2021.1920480
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The present study aims to evaluate the susceptibility to floods in the river basin of Buzau in Romania through the following 6 machine learning models: Support Vector Machine (SVM), J48 decision tree, Adaptive Neuro-Fuzzy Inference System (ANFIS), Random Forest (RF), Artificial Neural Network (ANN) and Alternating Decision Tree (ADT). In the first stage of the study, an inventory of the areas affected by floods was made in the study area, and a number of 205 flood points were identified. Further, 12 flood predictors were selected to be used for final susceptibility mapping. The six models' training was performed by using 70% of the total flood points that have been associated with the values of flood predictors. The highest accuracy (0.973) was obtained by the RF model, while J48 had the lowest performance (0.825). Besides, by classifying flood predictors' values in flood and non-flood pixels, the six flood susceptibility maps were made. High and very high flood susceptibility values cover between 17.71% (MLP) and 27.93% (ANFIS) of the study area. The validation of the results, performed using the ROC Curve, shows that the most accurate flood susceptibility values are also assigned to the RF model (AUC = 0.996).
引用
收藏
页码:1488 / 1507
页数:20
相关论文
共 50 条
  • [41] State-of-the-art machine learning techniques for melanoma skin cancer detection and classification: a comprehensive review
    Bhatt, Harsh
    Shah, Vrunda
    Shah, Krish
    Shah, Ruju
    Shah, Manan
    INTELLIGENT MEDICINE, 2023, 3 (03): : 180 - 190
  • [42] Arabic Cyberbullying Detection Using Machine Learning: State of the Art Survey
    Alsunaidi, Norah
    Aljbali, Sara
    Yasin, Yasmin
    Aljamaan, Hamoud
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 499 - 504
  • [43] State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques
    Wazirali, Raniyah
    Yaghoubi, Elnaz
    Abujazar, Mohammed Shadi S.
    Ahmad, Rami
    Vakili, Amir Hossein
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 225
  • [44] Spatial prediction of flood susceptible areas using machine learning methods in the Siahkhor Watershed of Kermanshah province
    Kiani, Ali
    Motamedvaziri, Baharak
    Khaleghi, Mohammad Reza
    Ahmadi, Hassan
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [45] Geospatial modeling using hybrid machine learning approach for flood susceptibility
    Mishra, Bibhu Prasad
    Ghose, Dillip Kumar
    Satapathy, Deba Prakash
    EARTH SCIENCE INFORMATICS, 2022, 15 (04) : 2619 - 2636
  • [46] Flood susceptibility modelling using advanced ensemble machine learning models
    Islam, Abu Reza Md Towfiqul
    Talukdar, Swapan
    Mahato, Susanta
    Kundu, Sonali
    Eibek, Kutub Uddin
    Quoc Bao Pham
    Kuriqi, Alban
    Nguyen Thi Thuy Linh
    GEOSCIENCE FRONTIERS, 2021, 12 (03)
  • [47] Flood Prediction Using Machine Learning Models: A Case Study of Kebbi State Nigeria
    Lawal, Zaharaddeen Karami
    Yassin, Hayati
    Zakari, Rufai Yusuf
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [48] Machine learning in solid state additive manufacturing: state-of-the-art and future perspectives
    Yadav, Ashish
    Srivastava, Manu
    Jain, Prashant K.
    Rathee, Sandeep
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, : 2317 - 2336
  • [49] Flood Risk Assessment of Global Watersheds Based on Multiple Machine Learning Models
    Li, Xiangnan
    Yan, Denghua
    Wang, Kun
    Weng, Baisha
    Qin, Tianling
    Liu, Siyu
    WATER, 2019, 11 (08)
  • [50] Machine learning assisted advanced battery thermal management system: A state-of-the-art review
    Li, Ao
    Weng, Jingwen
    Yuen, Anthony Chun Yin
    Wang, Wei
    Liu, Hengrui
    Lee, Eric Wai Ming
    Wang, Jian
    Kook, Sanghoon
    Yeoh, Guan Heng
    JOURNAL OF ENERGY STORAGE, 2023, 60