Detection of areas prone to flood risk using state-of-the-art machine learning models

被引:39
|
作者
Costache, Romulus [1 ]
Arabameri, Alireza [2 ]
Elkhrachy, Ismail [3 ,4 ]
Ghorbanzadeh, Omid [5 ]
Quoc Bao Pham [6 ,7 ]
机构
[1] Transilvania Univ Brasov, Dept Civil Engn, Brasov, Romania
[2] Tarbiat Modares Univ, Dept Geomorphol, Tehran, Iran
[3] Najran Univ, Coll Engn, Civil Engn Dept, Najran, Saudi Arabia
[4] Al Azhar Univ, Fac Engn, Civil Engn Dept, Cairo, Egypt
[5] Univ Salzburg, Dept Geoinformat Z GIS, Salzburg, Austria
[6] Ton Duc Thang Univ, Environm Qual Atmospher Sci & Climate Change Res, Ho Chi Minh City, Vietnam
[7] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam
基金
奥地利科学基金会;
关键词
Buzau catchment; flood susceptibility; machine learning; Romania; GIS; ARTIFICIAL NEURAL-NETWORKS; MULTICRITERIA DECISION-MAKING; KERNEL LOGISTIC-REGRESSION; NAIVE BAYES TREE; BIVARIATE STATISTICS; RIVER CATCHMENT; SUSCEPTIBILITY ASSESSMENT; SPATIAL PREDICTION; POTENTIAL INDEX; CLIMATE-CHANGE;
D O I
10.1080/19475705.2021.1920480
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The present study aims to evaluate the susceptibility to floods in the river basin of Buzau in Romania through the following 6 machine learning models: Support Vector Machine (SVM), J48 decision tree, Adaptive Neuro-Fuzzy Inference System (ANFIS), Random Forest (RF), Artificial Neural Network (ANN) and Alternating Decision Tree (ADT). In the first stage of the study, an inventory of the areas affected by floods was made in the study area, and a number of 205 flood points were identified. Further, 12 flood predictors were selected to be used for final susceptibility mapping. The six models' training was performed by using 70% of the total flood points that have been associated with the values of flood predictors. The highest accuracy (0.973) was obtained by the RF model, while J48 had the lowest performance (0.825). Besides, by classifying flood predictors' values in flood and non-flood pixels, the six flood susceptibility maps were made. High and very high flood susceptibility values cover between 17.71% (MLP) and 27.93% (ANFIS) of the study area. The validation of the results, performed using the ROC Curve, shows that the most accurate flood susceptibility values are also assigned to the RF model (AUC = 0.996).
引用
收藏
页码:1488 / 1507
页数:20
相关论文
共 50 条
  • [21] Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India
    Arora, Aman
    Arabameri, Alireza
    Pandey, Manish
    Siddiqui, Masood A.
    Shukla, U. K.
    Dieu Tien Bui
    Mishra, Varun Narayan
    Bhardwaj, Anshuman
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 750
  • [22] Machine learning for structural engineering: A state-of-the-art review
    Thai, Huu-Tai
    STRUCTURES, 2022, 38 : 448 - 491
  • [23] Machine Learning in Petrology: State-of-the-Art and Future Perspectives
    Petrelli, Maurizio
    JOURNAL OF PETROLOGY, 2024, 65 (05)
  • [24] Stacking state-of-the-art ensemble for flash-flood potential assessment
    Costache, Romulus
    Tin, Tran Trung
    Arabameri, Alireza
    Craciun, Anca
    Costache, Iulia
    Islam, Abu Reza Md. Towfiqul
    Sahana, Mehebub
    Pham, Binh Thai
    GEOCARTO INTERNATIONAL, 2022, 37 (26) : 13812 - 13838
  • [26] Unmanned aerial vehicles using machine learning for autonomous flight; state-of-the-art
    Choi, Su Yeon
    Cha, Dowan
    ADVANCED ROBOTICS, 2019, 33 (06) : 265 - 277
  • [27] Flash flood susceptibility mapping using stacking ensemble machine learning models
    Ilia, Loanna
    Tsangaratos, Paraskevas
    Tzampoglou, Ploutarchos
    Chen, Wei
    Hong, Haoyuan
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 15010 - 15036
  • [28] Leveraging Machine Learning and Deep Learning Models for Enhanced Stock Price Prediction: A State-of-the-Art Analysis
    Alaoui, Safae Belamfedel
    Hafid, Abdelatif
    Sayyouri, Mhamed
    Rahouti, Mohamed
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 21ST INTERNATIONAL CONFERENCE, 2025, 1259 : 53 - 64
  • [29] Application of GIS and Machine Learning to Predict Flood Areas in Nigeria
    Ighile, Eseosa Halima
    Shirakawa, Hiroaki
    Tanikawa, Hiroki
    SUSTAINABILITY, 2022, 14 (09)
  • [30] A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas
    Rocchi, Alessandro
    Chiozzi, Andrea
    Nale, Marco
    Nikolic, Zeljana
    Riguzzi, Fabrizio
    Mantovan, Luana
    Gilli, Alessandro
    Benvenuti, Elena
    APPLIED SCIENCES-BASEL, 2022, 12 (02):