The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: A "bumper-car" model

被引:247
作者
Thi, MM
Tarbell, JM
Weinbaum, S
Spray, DC [1 ]
机构
[1] CUNY, Grad Sch, New York, NY 10031 USA
[2] CUNY, Dept Biomed Engn, New York, NY 10031 USA
[3] Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA
关键词
mechanotransduction; actin cortical web; dense peripheral actin band;
D O I
10.1073/pnas.0407474101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a conceptual model for the cytoskeletal organization of endothelial cells (ECs) based on a major dichotomy in structure and function at basal and apical aspects of the cells. Intracellular distributions of filamentous actin (F-actin), vinculin, paxillin, ZO-1, and Cx43 were analyzed from confocal micrographs of rat fat-pad ECs after 5 h of shear stress. With intact glycocalyx, there was severe disruption of the dense peripheral actin bands (DPABs) and migration of vinculin to cell borders under a uniform shear stress (10.5 dyne/cm(2); 1 dyne = 10 muN). This behavior was augmented in corner flow regions of the flow chamber where high shear stress gradients were present. In striking contrast, no such reorganization was observed if the glycocalyx was compromised. These results are explained in terms of a "bumper-car" model, in which the actin cortical web and DPAB are only loosely connected to basal attachment sites, allowing for two distinct cellular signaling pathways in response to fluid shear stress, one transmitted by glycocalyx core proteins as a torque that acts on the actin cortical web (ACW) and DPAB, and the other emanating from focal adhesions and stress fibers at the basal and apical membranes of the cell.
引用
收藏
页码:16483 / 16488
页数:6
相关论文
共 43 条
[1]   PLASMA-PROTEINS MODIFY THE ENDOTHELIAL-CELL GLYCOCALYX OF FROG MESENTERIC MICROVESSELS [J].
ADAMSON, RH ;
CLOUGH, G .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 445 :473-486
[2]  
ADAMSON RH, 1993, J PHYSIOL-LONDON, V466, P303
[3]   Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling [J].
Bass, MD ;
Humphries, MJ .
BIOCHEMICAL JOURNAL, 2002, 368 :1-15
[4]   Cadherin interaction probed by atomic force microscopy [J].
Baumgartner, W ;
Hinterdorfer, P ;
Ness, W ;
Raab, A ;
Vestweber, D ;
Schindler, H ;
Drenckhahn, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (08) :4005-4010
[5]   Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells [J].
Boyd, NL ;
Park, H ;
Yi, H ;
Boo, YC ;
Sorescu, GP ;
Sykes, M ;
Jo, H .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2003, 285 (03) :H1113-H1122
[6]   TYROSINE PHOSPHORYLATION OF PAXILLIN AND PP125(FAK) ACCOMPANIES CELL-ADHESION TO EXTRACELLULAR-MATRIX - A ROLE IN CYTOSKELETAL ASSEMBLY [J].
BURRIDGE, K ;
TURNER, CE ;
ROMER, LH .
JOURNAL OF CELL BIOLOGY, 1992, 119 (04) :893-903
[7]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[8]  
DAVIES PF, 1986, P NATL ACAD SCI USA, V83, P2114, DOI 10.1073/pnas.83.7.2114
[9]   QUANTITATIVE STUDIES OF ENDOTHELIAL-CELL ADHESION - DIRECTIONAL REMODELING OF FOCAL ADHESION SITES IN RESPONSE TO FLOW FORCES [J].
DAVIES, PF ;
ROBOTEWSKYJ, A ;
GRIEM, ML .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (05) :2031-2038
[10]   Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro [J].
DePaola, N ;
Davies, PF ;
Pritchard, WF ;
Florez, L ;
Harbeck, N ;
Polacek, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3154-3159