Development of Closed-Loop Neural Interface Technology in a Rat Model: Combining Motor Cortex Operant Conditioning With Visual Cortex Microstimulation

被引:17
作者
Marzullo, Timothy Charles [1 ]
Lehmkuhle, Mark J. [2 ]
Gage, Gregory J. [2 ]
Kipke, Daryl R. [2 ]
机构
[1] Univ Michigan, Neurosci Program, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
基金
美国国家航空航天局; 美国国家卫生研究院;
关键词
Closed-loop control; microstimulation; motor cortex; operant conditioning; rat; visual cortex; ELECTRICAL-STIMULATION; CORTICAL CONTROL; AUDITORY-CORTEX; COMPUTER; FEEDBACK; MUSCLES; SYSTEM; ARM;
D O I
10.1109/TNSRE.2010.2041363
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
[1]   Neuroprosthetics: In search of the sixth sense [J].
Abbott, A .
NATURE, 2006, 442 (7099) :125-127
[2]  
ABELES FB, 1982, AGR FOR B, V5, P4
[3]   Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural Recording using Poly (3,4-ethylenedioxythiophene) Nanotubes [J].
Abidian, Mohammad Reza ;
Ludwig, Kip A. ;
Marzullo, Timothy C. ;
Martin, David C. ;
Kipke, Daryl R. .
ADVANCED MATERIALS, 2009, 21 (37) :3764-3770
[4]   Bi-stable neural state switches [J].
Berndt, Andre ;
Yizhar, Ofer ;
Gunaydin, Lisa A. ;
Hegemann, Peter ;
Deisseroth, Karl .
NATURE NEUROSCIENCE, 2009, 12 (02) :229-234
[5]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268
[6]   Visuotopic mapping through a multichannel stimulating implant in primate V1 [J].
Bradley, DC ;
Troyk, PR ;
Berg, JA ;
Bak, M ;
Cogan, S ;
Erickson, R ;
Kufta, C ;
Mascaro, M ;
McCreery, D ;
Schmidt, EM ;
Towle, VL ;
Xu, H .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 93 (03) :1659-1670
[7]   SENSATIONS PRODUCED BY ELECTRICAL STIMULATION OF VISUAL CORTEX [J].
BRINDLEY, GS ;
LEWIN, WS .
JOURNAL OF PHYSIOLOGY-LONDON, 1968, 196 (02) :479-&
[8]   Learning to control a brain-machine interface for reaching and grasping by primates [J].
Carmena, JM ;
Lebedev, MA ;
Crist, RE ;
O'Doherty, JE ;
Santucci, DM ;
Dimitrov, DF ;
Patil, PG ;
Henriquez, CS ;
Nicolelis, MAL .
PLOS BIOLOGY, 2003, 1 (02) :193-208
[9]   Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex [J].
Chapin, JK ;
Moxon, KA ;
Markowitz, RS ;
Nicolelis, MAL .
NATURE NEUROSCIENCE, 1999, 2 (07) :664-670
[10]   CLOSED-LOOP CONTROL IN PROSTHETIC SYSTEMS - HISTORICAL-PERSPECTIVE [J].
CHILDRESS, DS .
ANNALS OF BIOMEDICAL ENGINEERING, 1980, 8 (4-6) :293-303