Realizing alternating groups as monodromy groups of genus one covers

被引:10
作者
Fried, M [1 ]
Klassen, E
Kopeliovich, Y
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92717 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Unigraph Solut, Cypress, CA 90630 USA
关键词
Riemann surface; monodromy group; Hurwitz space;
D O I
10.1090/S0002-9939-00-05736-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if n greater than or equal to 4, a generic Riemann surface of genus 1 admits a meromorphic function (i.e., an analytic branched cover of P-1) of degree n such that every branch point has multiplicity 3 and the monodromy group is the alternating group A(n). To prove this theorem, we construct a Hurwitz space and show that it maps (generically) onto the genus one moduli space.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 8 条
[1]   FIELDS OF DEFINITION OF FUNCTION FIELDS AND HURWITZ FAMILIES - GROUPS AS GALOIS GROUPS [J].
FRIED, M .
COMMUNICATIONS IN ALGEBRA, 1977, 5 (01) :17-82
[2]  
Fried M., 1989, CONT MATH, P61
[3]  
FRIED M, 1999, ALTERNATING GROUPS L
[4]  
GRIFFITHS P, 1970, B AMS MAR, P228
[5]  
GURALNICK R, 1996, CONT MATH, V186, P325
[6]  
KLASSEN E, 1997, HURWITZ SPACES BRAID
[7]   The deformation clauses of simple connected areas [J].
Kneser, H .
MATHEMATISCHE ZEITSCHRIFT, 1926, 25 :362-372
[8]  
MUMFORD D, 1976, CURVES THEIR JACOBIA