Multitype shape theorems for first passage percolation models

被引:12
作者
Pimentel, Leandro P. R. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
关键词
first passage percolation; competing growth; multitype shape theorem; competition interface;
D O I
10.1239/aap/1175266469
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Euclidean first passage percolation model describing the competing growth between k different types of infection is considered. We focus on the long-time behavior of this multitype growth process and we derive multitype shape results related to its morphology.
引用
收藏
页码:53 / 76
页数:24
相关论文
共 21 条
[1]   DENSITY AND UNIQUENESS IN PERCOLATION [J].
BURTON, RM ;
KEANE, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :501-505
[2]  
Deijfen M., 2004, MARKOV PROC RELATED, V10, P217
[3]  
DERRIDA B, 1991, J PHYS A, V24, P191
[4]  
Ferrari PA, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevA.73.031602
[5]   Competition interfaces and second class particles [J].
Ferrari, PA ;
Pimentel, LPR .
ANNALS OF PROBABILITY, 2005, 33 (04) :1235-1254
[6]   Coexistence in two-type first-passage percolation models [J].
Garet, O ;
Marchand, R .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A) :298-330
[7]   First passage percolation and a model for competing spatial growth [J].
Haggstrom, O ;
Pemantle, R .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (03) :683-692
[8]   Absence of mutual unbounded growth for almost all parameter values in the two-type Richardson model [J].
Häggström, O ;
Pemantle, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) :207-222
[9]  
Hammersley J. M., 1965, P INT RES SEM STAT L, P61
[10]   Coexistence for Richardson type competing spatial growth models [J].
Hoffman, C .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (1B) :739-747