One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries

被引:145
作者
An, Yongling [1 ]
Tian, Yuan [1 ]
Liu, Chengkai [1 ]
Xiong, Shenglin [2 ]
Feng, Jinkui [1 ]
Qian, Yitai [3 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
[3] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
silicon anodes; MXene; N-doped carbon; lithium-ion batteries; lithium-metal batteries; LITHIUM; ANODES; SI; INTERPHASE; SURFACE; SPHERES; DESIGN;
D O I
10.1021/acsnano.1c11098
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the advantages of a high theoretical capacity, proper working voltage, and abundant reserves, silicon (Si) is regarded as a promising anode for lithium-ion batteries. However, huge volume expansion and low electronic conductivity impede the commercialization of Si anodes. We devised a one-step, vacuum-assisted reactive carbon coating technique to controllably produce micrometer-sized nanoporous silicon confined by homogeneous N-doped carbon nanosheet frameworks (NPSi@NCNFs), achieved by the solid state reaction of a commercial bulk precursor and the subsequent evaporation of byproducts. The graphitization degree, C and N contents of the carbon shell, as well as the porosity of Si can be regulated by adjusting the synthetic conditions. A rational structure can mitigate volume expansion to maintain structural integrity, enhance electronic conductivity to facilitate charge transport, and serve as a protected layer to stabilize the solid electrolyte interphase. The NPSi@NCNF anode enables a stable cycling performance with 95.68% capacity retention for 4000 cycles at 5 A g(-1). Furthermore, a flexible 2D/3D architecture is designed by conjugating NPSi@NCNFs with MXene. Lithiophilic NPSi@NCNFs homogenize Li nucleation and growth, evidenced by structural evolutions of MXene@NPSi@NCNF deposited Li. The application potential of NPSi@NCNFs and MXene@NPSi@NCNFs is estimated via assembling full cells with LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Mn1.5O4 cathodes. This work offers a method for the rational design of alloy-based materials for advanced energy storage.
引用
收藏
页码:4560 / 4577
页数:18
相关论文
共 74 条
[1]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion [J].
An, Yongling ;
Tian, Yuan ;
Wei, Chuanliang ;
Zhang, Yuchan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ENERGY STORAGE MATERIALS, 2020, 32 :115-150
[3]   Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage [J].
An, Yongling ;
Tian, Yuan ;
Wei, Chuanliang ;
Tao, Yuan ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
NANO TODAY, 2021, 37
[4]   Two-Dimensional Silicon/Carbon from Commercial Alloy and CO2 for Lithium Storage and Flexible Ti3C2Tx MXene-Based Lithium-Metal Batteries [J].
An, Yongling ;
Tian, Yuan ;
Zhang, Yuchan ;
Wei, Chuanliang ;
Tan, Liwen ;
Zhang, Chenghui ;
Cui, Naxin ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2020, 14 (12) :17574-17588
[5]   Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode [J].
An, Yongling ;
Tian, Yuan ;
Wei, Hao ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (09)
[6]   Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries [J].
An, Yongling ;
Tian, Yuan ;
Wei, Chuanliang ;
Jiang, Huiyu ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2019, 13 (12) :13690-13701
[7]   Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2018, 12 (05) :4993-5002
[8]   Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling [J].
Boebinger, Matthew G. ;
Yarema, Olesya ;
Yarema, Maksym ;
Unocic, Kinga A. ;
Unocic, Raymond R. ;
Wood, Vanessa ;
McDowell, Matthew T. .
NATURE NANOTECHNOLOGY, 2020, 15 (06) :475-+
[9]   Perpendicular MXene Arrays with Periodic Interspaces toward Dendrite-Free Lithium Metal Anodes with High-Rate Capabilities [J].
Cao, Zhenjiang ;
Zhu, Qi ;
Wang, Shuai ;
Zhang, Di ;
Chen, Hao ;
Du, Zhiguo ;
Li, Bin ;
Yang, Shubin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (05)
[10]   A Micrometer-Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon [J].
Chae, Sujong ;
Xu, Yaobin ;
Yi, Ran ;
Lim, Hyung-Seok ;
Velickovic, Dusan ;
Li, Xiaolin ;
Li, Qiuyan ;
Wang, Chongmin ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2021, 33 (40)