Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids

被引:2
作者
Volkov, K. N. [1 ]
Emel'yanov, V. N. [1 ]
Teterina, I. V. [1 ]
机构
[1] St Petersburg Balt Tech Univ, 1 Ya Krasnoarmeiskaya Ul 1, St Petersburg 190005, Russia
基金
俄罗斯基础研究基金会;
关键词
multigrid method; unstructured grid; smoothing; interpolation; fluid dynamics; NAVIER-STOKES EQUATIONS; SIMULATION; SCHEMES; EULER; FLOW;
D O I
10.1134/S0965542516020159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Issues concerning the implementation and practical application of geometric and algebraic multigrid techniques for solving systems of difference equations generated by the finite volume discretization of the Euler and Navier-Stokes equations on unstructured grids are studied. The construction of prolongation and interpolation operators, as well as grid levels of various resolutions, is discussed. The results of the application of geometric and algebraic multigrid techniques for the simulation of inviscid and viscous compressible fluid flows over an airfoil are compared. Numerical results show that geometric methods ensure faster convergence and weakly depend on the method parameters, while the efficiency of algebraic methods considerably depends on the input parameters.
引用
收藏
页码:286 / 302
页数:17
相关论文
共 23 条
[1]  
AGARD Fluid Dynamics Panel, 1986, AGARD ADV REP
[2]  
BRANDT A, 1982, LECT NOTES MATH, V960, P220
[3]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[4]   Extending the applicability of multigrid methods [J].
Brannick, J. ;
Brezina, M. ;
Falgout, R. ;
Manteuffel, T. ;
McCormick, S. ;
Ruge, J. ;
Sheehan, B. ;
Xu, J. ;
Zikatanov, L. .
SCIDAC 2006: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2006, 46 :443-452
[5]   Robustness and scalability of algebraic multigrid [J].
Cleary, AJ ;
Falgout, RD ;
Henson, VE ;
Jones, JE ;
Manteuffel, TA ;
McCormick, SF ;
Miranda, GN ;
Ruge, JW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05) :1886-1908
[6]  
Crumpton P I., 1997, Numerical Methods in Laminar and Turbulent Flow, P561
[7]  
Fedorenko R.P., 1961, Z VYCISL MAT MAT FIZ, V1, P922
[8]  
Hackbusch W., 1985, MULTIGRID METHOD APP
[10]   ANALYSIS AND DESIGN OF NUMERICAL SCHEMES FOR GAS-DYNAMICS .1. ARTIFICIAL DIFFUSION, UPWIND BIASING, LIMITERS AND THEIR EFFECT ON ACCURACY AND MULTIGRID CONVERGENCE [J].
JAMESON, A .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1995, 4 (3-4) :171-218