An efficient geometric integrator for thermostatted anti-/ferromagnetic models

被引:8
作者
Arponen, T
Leimkuhler, B
机构
[1] Aalto Univ, Inst Math, FIN-02015 Espoo, Finland
[2] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
Heisenberg ferromagnet; micromagnetics; spin dynamics; Landau-Lifschitz equation; Gilbert damping; thermostats; constant temperature; domain walls; geometric integrator; reversible method;
D O I
10.1023/B:BITN.0000046812.08252.34
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
(Anti)-/ferromagnetic Heisenberg spin models arise from discretization of Landau-Lifshitz models in micromagnetic modelling. In many applications it is essential to study the behavior of the system at a fixed temperature. A formulation for thermostatted spin dynamics was given by Bulgac and Kusnetsov, which incorporates a complicated nonlinear dissipation/driving term while preserving spin length. It is essential to properly model this term in simulation, and simplified schemes give poor numerical performance, e. g., requiring an excessively small timestep for stable integration. In this paper we present an efficient, structure-preserving method for thermostatted spin dynamics.
引用
收藏
页码:403 / 424
页数:22
相关论文
共 25 条
[1]  
ANDERSON JC, 1968, MAGNETISM MAGNETIC M
[2]   Spin dynamics in magnets: Equation of motion and finite temperature effects [J].
Antropov, VP ;
Katsnelson, MI ;
Harmon, BN ;
vanSchilfgaarde, M ;
Kusnezov, D .
PHYSICAL REVIEW B, 1996, 54 (02) :1019-1035
[3]   Generating generalized distributions from dynamical simulation [J].
Barth, EJ ;
Laird, BB ;
Leimkuhler, BJ .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (13) :5759-5768
[4]   The Nose-Poincare method for constant temperature molecular dynamics [J].
Bond, SD ;
Leimkuhler, BJ ;
Laird, BB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :114-134
[5]   CANONICAL ENSEMBLE AVERAGES FROM PSEUDOMICROCANONICAL DYNAMICS [J].
BULGAC, A ;
KUSNEZOV, D .
PHYSICAL REVIEW A, 1990, 42 (08) :5045-5048
[6]   Numerical methods for the Landau-Lifshitz equation [J].
E, W ;
Wang, XP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1647-1665
[7]  
FADDEEV LD, 1987, SPRINGER SERIES SOVI
[8]   Stability and accuracy of Euler and quaternion micromagnetic algorithms [J].
Feng, XB ;
Visscher, PB .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) :8712-8714
[9]   Geometric integrators for classical spin systems [J].
Frank, J ;
Huang, WZ ;
Leimkuhler, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 133 (01) :160-172
[10]  
FRANK J, 2003, GEOMETRIC SPACE TIME